×

zbMATH — the first resource for mathematics

New boundary condition treatments in meshfree computation of contact problems. (English) Zbl 0980.74077
Summary: We propose two boundary condition treatments to enhance the computational efficiency of meshfree methods for contact problems. The mixed transformation method is modified by introducing a node partitioning and a mixed coordinate, so that the matrix inversion and multiplication of coordinate transformation involves operations only on the sub-degrees of freedom associated with the boundary group. The boundary singular kernel method introduces singularities to kernel functions of essential and contact boundary nodes, so that the corresponding coefficients of singular kernel shape functions recover nodal values, and consequently kinematic constraints can be imposed directly. The effectiveness of the proposed methods is demonstrated in numerical examples.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74M15 Contact in solid mechanics
Software:
Nike2D
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. comput., 37, 141-158, (1981) · Zbl 0469.41005
[2] Belytschko, T.; Lu, Y.Y.; Gu, L., Element-free Galerkin methods, Int. J. numer. meth. eng., 37, 229-256, (1994) · Zbl 0796.73077
[3] Lu, Y.Y.; Belytschko, T.; Gu, L., A new implementation of the element free Galerkin method, Comput. meth. appl. mech. eng., 113, 397-414, (1994) · Zbl 0847.73064
[4] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. meth. fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[5] Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, B., Reproducing kernel particle methods for structural dynamics, Int. J. numer. meth. eng., 38, 1655-1679, (1995) · Zbl 0840.73078
[6] Liu, W.K.; Li, S.; Belytschko, T., Moving least square kernel Galerkin method, Comput. meth. appl. mech. eng., 143, 422-433, (1997), Part I: methodology and convergence
[7] Babuska, I.; Melenk, J.M., The partition of unity method, Int. J. numer. meth. eng., 40, 727-758, (1997) · Zbl 0949.65117
[8] Melenk, J.M.; Babuska, I., The partition of unity finite element method: basic theory and applications, Comput. meth. appl. mech. eng., 139, 289-314, (1996) · Zbl 0881.65099
[9] Duarte, C.A., An review of some meshless methods to solve partial differential equations, Tech. report 95-106, TICAM, (1995), The University of Texas at Austin
[10] Duarte, C.A.; Oden, J.T., H-p clouds: an h-p meshless method, Numer. meth. partial differ. eq., 12, 6, 673-705, (1996) · Zbl 0869.65069
[11] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput. meth. appl. mech. eng., 139, 49-74, (1996) · Zbl 0918.73329
[12] J.S. Chen, C.T. Wu, S. Yoon, Y. You, A stabilized conforming nodal integration for Galerkin meshfree methods, Int. J. Meth. Eng., in press. · Zbl 1011.74081
[13] Belytschko, T.; Gu, L.; Lu, Y.Y., Fracture and crack growth by EFG method, Model. simul. mater. sci. eng., 2, 519-534, (1994)
[14] Belytschko, T.; Tabbara, M., Dynamic fracture using element-free Galerkin methods, Int. J. numer. meth. eng., 39, 923-938, (1996) · Zbl 0953.74077
[15] Belytschko, T.; Kronggauz, Y.; Organ, D.; Fleming, M., Meshless methods: an overview and recent developments, Comput. meth. appl. mech. eng., 139, 3-47, (1996) · Zbl 0891.73075
[16] Liu, W.K.; Chen, Y., Wavelet and multiple scale reproducing kernel particle methods, Int. J. numer. meth. fluids, 21, 901-931, (1995) · Zbl 0885.76078
[17] Liu, W.K.; Chen, Y.; Jun, S.; Chen, J.S.; Belytschko, T.; Pan, C.; Uras, R.A.; Chang, C.T., Overview and applications of the reproducing kernel particle methods, Archives in computational methods in engineering state of the art reviews, 3, 3-80, (1996)
[18] Liu, W.K.; Chen, Y.; Uras, R.A.; Chang, C.T., Generalized multiple scale reproducing kernel particle methods, Comput. meth. appl. mech. eng., 139, 91-157, (1996) · Zbl 0896.76069
[19] Liu, W.K.; Hao, W.; Chen, Y.; Jun, S.; Gosz, J., Multiresolution reproducing kernel particle methods, Comput. mech., 20, 4, 295-309, (1997) · Zbl 0893.73078
[20] S. Li, W.K. Liu, Moving least-squares reproducing kernel method, Part III: wavelet packet and its applications, Comput. Meth. Appl. Mech. Eng. (submitted).
[21] Li, S.; Liu, W.K., Synchronized reproducing kernel interpolant via multiple wavelet expansion, Comput. mech., 21, 28-47, (1998) · Zbl 0912.76057
[22] Duarte, C.A.; Oden, J.T., An h-p adaptive method using clouds, Comput. meth. appl. mech. eng., 139, 237-262, (1996) · Zbl 0918.73328
[23] Liszka, T.J.; Duarte, C.A.M.; Tworzydlo, W.W., Hp-meshless cloud method, Comput. meth. appl. mech. eng., 139, 263-288, (1996) · Zbl 0893.73077
[24] Chen, J.S.; Pan, C.; Wu, C.T.; Liu, W.K., Reproducing kernel particle mathods for large deformation analysis of nonlinear structures, Comput. meth. appl. mech. eng., 139, 195-227, (1996)
[25] Chen, J.S.; Pan, C.; Wu, C.T., Large deformation analysis of rubber based on a reproducing kernel particle method, Comput. mech., 19, 211-227, (1997) · Zbl 0888.73073
[26] Chen, J.S.; Wu, C.T.; Pan, C., Application of reproducing kernel particle method to large deformation and contact analysis of elastomers, Rubber chem. tech., 71, 2, 1-23, (1998)
[27] Chen, J.S.; Pan, C.; Roque, C.M.O.L.; Wang, H.P., A Lagrangian reproducing kernel particle method for metal forming analysis, Computational mechanics, 22, 289-307, (1998) · Zbl 0928.74115
[28] Chen, J.S.; Yoon, S.; Wang, H.P.; Liu, W.K., An improved reproducing kernel particle method for nearly incompressible finite elasticity, Comput. meth. appl. mech. eng., 181, 117-145, (2000) · Zbl 0973.74088
[29] Chen, J.S.; Wu, C.T., Generalized nonlocal meshfree method in strain localization, Proceeding of international conference on computational engineering science, Atlanta, Georgia, (691998)
[30] Grindeanu, I.; Chang, K.H.; Choi, K.K.; Chen, J.S., Design sensitivity analysis for hyperelastic structures using a meshless method, Aiaa j., 36, 618-627, (1998)
[31] Grindeanu, I.; Choi, K.K.; Chen, J.S., Design sensitivity analysis and optimization using meshless method, Proceeding of international conference on computational engineering science, Atlanta, Georgia, (691998)
[32] Babuska, I., The finite element method with Lagrangian multipliers, Numer. math., 20, 179-192, (1973) · Zbl 0258.65108
[33] Krongauz, Y.; Belytschko, T., Enforcement of essential boundary conditions in meshless approximations using finite elements, Comput. methods appl. eng., 131, 133-145, (1996) · Zbl 0881.65098
[34] Gunther, F.; Liu, W.K., Implementation of boundary conditions for meshless methods, Comput. methods appl. mech. eng., 163, 205-230, (1998) · Zbl 0963.76068
[35] Kaljevic, I.; Saigal, S., An improved element free Galerkin formulation, Int. J. numer. meth. eng., 40, 2953-2974, (1997) · Zbl 0895.73079
[36] Zhu, T.; Atluri, S.N., A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element of Galerkin method, Comput. mech., 21, 211-222, (1998) · Zbl 0947.74080
[37] Saleeb, A.F.; Chen, K.; Chang, T.Y.P., An effective two-dimensional frictional contact model for arbitrary curved geometry, Int. J. numer. meth. eng., 37, 1297-1321, (1994) · Zbl 0805.73067
[38] Hallquist, J.O.; Goudreau, G.J.; Benson, D.J., Sliding interfaces with contact-impact in large scale Lagrangian computations, Comput. meth. appl. mech. eng., 51, 107-137, (1985) · Zbl 0567.73120
[39] Dureli, A.J.; Parks, V.J., Moire analysis of strains, (1970), Prentice-Hall Englewood Cliffs, NJ
[40] Choudhry, S.; Lee, J.K., Dynamic plane-strain element simulation of industrial sheet-metal forming process, Int. J. mech. sci., 36, 189-207, (1994) · Zbl 0838.73071
[41] Roque, C.M.O.L., Application of the finite element method to the cold forging sequence design, Master dissertation, (1996), State University of Campinas
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.