×

zbMATH — the first resource for mathematics

Computer implementation of damage models by finite element and meshfree methods. (English) Zbl 0980.74063
From the summary: We propose a computational methodology of a micromechanic cell model to establish the constitutive law during material fracture. As an application, we investigate the ductile fracture process and obtain a new model parameter function for damage based on a computational cell modeling technique. Aspects of computer implementation for finite element and meshfree methods are described. The technique is applied to numerical examples including necking behavior of a tensile bar, a cracked panel under tension, an edge notched panel under pure bending a plane strain plate under compression, and the ductile tearing with large deformation of a notch-bend specimen. We also study applications of reproducing kernel particle method to the ductile fracture process involving damage evolution, and perform a multiresolution analysis on shear bands. The analytical and numerical results confirm the efficiency of proposed methodology.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74R20 Anelastic fracture and damage
PDF BibTeX Cite
Full Text: DOI
References:
[1] Auger, J.P.; Francois, D., Variation of fracture toughness of a 7075 aluminum alloy with hydrostatic pressure and relationship with tensile ductility, Int. J. fracture, 13, 321, (1977)
[2] Becker, R.; Smelser, R.E.; Richmond, O.; Appleby, E.J., The effect of void shape on void growth and ductility in axisymmetric tension tests, Metallurgica trans., 20, 853-861, (1989)
[3] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. methods appl. mech. eng., 139, 3-47, (1996) · Zbl 0891.73075
[4] Bishop, J.F.W.; Hill, R., A theory of the plastic distortion of a polyerystalline aggregate under combined stresses, Phil. mag., 42, 414-427, (1951) · Zbl 0042.22705
[5] Budiansky, B.; Hutchinson, J.W.; Slutsky, S., (), 13
[6] Chen, J.S.; Pan, C.; Liu, W.K., Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. methods appl. mech. eng., 139, 195-228, (1996)
[7] Chu, C.C.; Needleman, A., Void nucleation effects in biaxially strached sheets, J. eng. mater. tech., 102, 249-256, (1980)
[8] Duva, J.M.; Hutchinson, J.W., Mech. mater., 3, 41, (1984)
[9] Faleskog, J.; Shih, C.F., Micromechanics of coalescence - I. synergistic effects of elasticity, plastic yielding and multi-size-scale voids, J. mech. phys. solid, (1997)
[10] Gunther, F.C.; Liu, W.K., Implementation of boundary conditions for meshless methods, Comput. methods appl. mech. eng., 163, 205-230, (1998) · Zbl 0963.76068
[11] Gurson, A.L., Continuum theory of ductile rupture by void nucleation and growth: part I - yield criteria and flow rules for porous ductile media, J. eng. mater. tech., 99, 2-15, (1977)
[12] Hancock, J.W.; Mackenzie, A.C., On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states, J. mech. phys. solids, 24, 147, (1976)
[13] Hao, S.; Brocks, W., The Gurson-tvergaard-needleman model for rate and temperature-dependent materials with isotropic and kinematic hardening, Comput. mech., 20, (1996) · Zbl 0887.73049
[14] Huang, Y.; Hutchinson, J.W.; Tvergaard, V., Cavitation instabilities in elastic-plastic solids, J. mech. phys. solids, 39, 223-241, (1991)
[15] Hughes, T.J.R.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Int. J. numer. methods eng., 15, 1862-1867, (1980) · Zbl 0463.73081
[16] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1991), Prentice-Hall New York
[17] Jun, S.; Liu, W.K.; Belytschko, T., Explicit reproducing kernel particle methods for large deformation problems, Int. J. numer. methods eng., 41, 137-166, (1998) · Zbl 0909.73088
[18] Knott, J.F., Fundamentals of fracture mechanics, (1973), Wiley New York
[19] Koplik, J.; Needleman, A., Void growth and coalescence in porous plastic solids, Int. J. solids and structures, 24, 835-853, (1988)
[20] Li, S.; Liu, W.K., Moving least square kernel Galerkin method II Fourier analysis and convergence, Comput. methods appl. mech. eng., 139, 159-194, (1996)
[21] Li, S.; Liu, W.K., Reproducing kernel hierarchical partition of unity, part I: formulation and theory, Int. J. numer. methods eng., 45, 251-288, (1999)
[22] Li, S.; Liu, W.K., Reproducing kernel hierarchical partition of unity, part II: applications, Int. J. numer. methods eng., 45, 289-311, (1999)
[23] Li, S.; Liu, W.K., Synchronized reproducing kernel interpolant vis multiple wavelet expansion, Comput. mech., 21, 28-47, (1998) · Zbl 0912.76057
[24] Liu, W.K., Notes on advanced finite element methods, (1992), Northwestern University
[25] Liu, W.K., An introduction to wavelet reproducing kernel particle methods, USACM bulletin, 8, 1, 3-16, (1995)
[26] Liu, W.K.; Adee, J.; Jun, S., Reproducing kernel and wavelet particle methods for elastic and plastic problems, (), 175-190, (AMD 180 and PVP 268 ASME)
[27] Liu, W.K.; Chang, C.T.; Chen, Y.; Uras, R.A., Multiresolution reproducing kernel particle methods in acoustic problems, Acoustics, vibrations, and rotating machines, ASME DE-vol. 84-92, 881-900, (1995), Part B
[28] Liu, W.K.; Chen, Y., Wavelet and multiple scale reproducing kernel methods, Int. J. numer. methods fluids, 21, 901-931, (1995) · Zbl 0885.76078
[29] Liu, W.K.; Chen, Y.; Chang, C.T.; Belytschko, T., Advances in multiple scale kernel particle methods, A special feature article for the 10th anniversary volume of comput. mech., 18, 2, 73-111, (1996) · Zbl 0868.73091
[30] Liu, W.K.; Chen, Y.; Jun, S.; Chen, J.S.; Belytschko, T.; Pan, C.; Uras, R.A.; Chang, C.T., Overview and applications of the reproducing kernel particle methods, Archives of computational methods in engineering: state of the art reviews, 3, 91-158, (1996)
[31] Liu, W.K.; Chen, Y.; Uras, R.A.; Chang, C.T., Generalized multiple scale reproducing kernel particle methods, Comput. methods appl. mech. eng., 139, 91-158, (1996) · Zbl 0896.76069
[32] Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. numer. methods eng., 38, 1655-1679, (1995) · Zbl 0840.73078
[33] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. methods fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[34] Liu, W.K.; Li, S.; Belytschko, T., Moving least square kernel Galerkin method I methodology and convergence, Comput. methods appl. mech. eng., 143, 113-154, (1997) · Zbl 0883.65088
[35] Liu, W.K.; Oberste-Brandenburg, C., Reproducing kernel and wavelet particle methods, (), 39-56, Aerospace Structures: Nonlinear Dynamics and System Response
[36] Liu, W.K.; Uras, R.A.; Chen, Y., Enrichment of the finite element method with the reproducing kernel particle method, J. appl. mech. ASME, 64, 861-870, (1998) · Zbl 0920.73366
[37] Liu, W.K.; Zhang, Y.; Ramirez, M.R., Multiple scale finite element methods, Int. J. numer. methods eng. fluids, 32, 969-990, (1991) · Zbl 0758.73049
[38] Lua, Y.J.; Liu, W.K., Elastic interactions of a fatigue crack with a micro-defect by mixed boundary integral equation method, Int. J. numer. methods, 36, 2743-2759, (1993) · Zbl 0780.73093
[39] Lua, Y.J.; Liu, W.K.; Belytschko, T., A stochastic damage model for the rupture prediction of a multi-phase solid, Int. J. fracture, 55, 321-340, (1992), part I: Parametric studies
[40] Lua, Y.J.; Liu, W.K.; Belytschko, T., A stochastic damage model for the rupture prediction of a multi-phase solid, Int. J. fracture, 55, 341-361, (1992), part II: Statistical approach
[41] McClintock, F.A., An advanced treatise, plasticity aspects of fracture, (1971), Academic Press New York
[42] Michel, J.C.; Suquet, P., The constitutive law of nonlinear viscous and porous materials, J. mech. phys. solids, 40, 4, 783-812, (1992) · Zbl 0825.73021
[43] Needleman, A., A numerical study of necking in circular cylindrical bars, J. mech. phys. solids, 20, 111-127, (1972) · Zbl 0236.73077
[44] Needleman, A.; Tvergaard, V., An analysis of ductile rupture modes at a crack tip, J. mech. phys. solids, 35, 151-183, (1987) · Zbl 0601.73106
[45] Ortiz, M.; Simo, J.C., An analysis of a new calls of integration algorithms for elastoplastic constitutive equations, Int. J. numer. methods eng., 23, 353-366, (1986) · Zbl 0585.73058
[46] Rice, J.R.; Johnson, M.A., The role of large crack tip geometry, changes in plane strain fracture, Inelastic behavior of solids, 641-672, (1970)
[47] Rice, J.R.; Tracey, D.M., On the ductile enlargement of voids in triaxial stress field, J. mech. phys. solids, 17, 201-217, (1969)
[48] Rice, J.R.; Tracey, D.M., Computational fracture mechanisms, ()
[49] Rousselier, G., Finite deformation constitutive relations including ductile fracture damage, (), 331-355
[50] Rudnicki, J.W.; Rice, J.R., Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. mech. phys. solids, 23, 371-394, (1975)
[51] Ruggieri, C.; Panontin, T.L.; Dodds, R.H., Numerical modeling of ductile crack growth in 3-D using computational cell elements, Int. J. fracture, 82, 67-95, (1996)
[52] Simo, J.C.; Ortiz, M., A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic equations, Comput. meth. appl. mech. eng., 49, 221-245, (1985) · Zbl 0566.73035
[53] Tvergaard, V., Influence of voids on shear band instabilities under plane strain condition, I. J. fracture mech., 17, 389-407, (1981)
[54] Tvergaard, V.; Needleman, A., Analysis of the cup-cone fracture in a round tensile bar, Acta matallurgica, 32, 157-169, (1984)
[55] Uras, R.A.; Chang, C.T.; Chen, Y.; Liu, W.K., Multiresolution reproducing kernel particle methods in acoustics, J. comput. acoust., 5, 1, 71-94, (1997)
[56] Wilkins, M.L., Calculations of elastic-plastic flow, ()
[57] Xia, L.; Shih, C.F., Ductile crack growth - I. A numerical study using computational microstructurally-based length scales, J. mech. phys. solids, 43, 233-259, (1995) · Zbl 0879.73047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.