Robust principal component analysis for functional data. (With comments). (English) Zbl 0980.62049

Summary: A method for exploring the structure of populations of complex objects, such as images, is considered. The objects are summarized by feature vectors. The statistical backbone is Principal Components Analysis in the space of feature vectors. Visual insights come from representing the results in the original data space. In an ophthalmological example, endemic outliers motivate the development of a bounded influence approach to PCA.


62H25 Factor analysis and principal components; correspondence analysis
62H99 Multivariate analysis
62A09 Graphical methods in statistics


fda (R)
Full Text: DOI


[1] Born, M. and E. Wolf (1980).Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Pergamon Press, New York. · Zbl 0086.41704
[2] Cootes, T. F., A. Hill, C.J. Taylor and J. Haslam (1993). The use of active shape models for locating structures in medical images.Information Processing in Medical Imaging (H.H. Barret and A.F. Gmitro, eds.) Lecture Notes in Computer Science, vol. 687. Springer Verlag, Berlin, 33–47.
[3] Devijver, P. A. and J. Kittler (1982).Pattern Recognition: A Statistical Approach. Prentice Hall, London. · Zbl 0542.68071
[4] Dryden, I.L. and K.V. Mardia (1998).Statistical Shape Analysis. Wiley: New York. · Zbl 0901.62072
[5] Fan, J. and S.K. Lin (1998). Test of significance when the data are curves.Journal of the American Statistical Association,93, 1007–1021. · Zbl 1064.62525
[6] Gower, J.C. (1974). The mediancentre.Applied Statistics,23, 466–470.
[7] Haldane, J.B.S. (1948). Note on the median of a multivariate distribution.biometrika,35, 414–415. · Zbl 0032.03601
[8] Hampel, F.R., E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel (1986).Robust Statistics: The Approach Based on Influence Functions Wiley, New York. · Zbl 0593.62027
[9] Huber, P.J. (1981).Robust Statistics. Wiley, New York. · Zbl 0536.62025
[10] Inselberg, A. (1985). The plane with parallel coordinates.The Visual Computer,1, 69–91. · Zbl 0617.52005
[11] Kelemen, A., G. Szekely and G. Gerig (1997). Three dimensional model-based segmentation. TR-178 Technical Report Image Science Lab, ETH Zurich.
[12] Milasevic, P. and G.R. Ducharme (1987). Uniqueness of the spatial median.Annals of Statistics,15, 1332–1333. · Zbl 0631.62058
[13] Ramsay, J. O. and B.W. Silverman (1997).Functional Data Analysis. Springer Verlag, New York. · Zbl 0882.62002
[14] Rousseeuw, P.J. and A.M. Leroy (1987).Robust Regression and Outlier Detection. Wiley, New York. · Zbl 0711.62030
[15] Small, G.C. (1990). A survey of multidimensional medians.International Statistical Review,58, 263–277.
[16] Staudte, R.G. and S.J. Sheather (1990).Robust Estimation and Testing, Wiley, New York. · Zbl 0706.62037
[17] Schwiegerling, J., J.E. Greivenkamp and J.M. Miller (1995). Representation of videokeratoscopic height data with Zernike polynomials.Journal of the Optical Society of America, A,12, 12105–2113.
[18] Wegman, E.J. (1990). Hyperdimensional data analysis using parallel coordinates.Journal of the American Statistical Association,85, 664–675.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.