×

zbMATH — the first resource for mathematics

Testing additivity in generalized nonparametric regression models with estimated parameters. (English) Zbl 0978.62032
Summary: We develop several kernel-based consistent tests of an hypothesis of additivity in nonparametric regression. We allow for discrete covariates and parameters estimated from a semiparametric GMM criterion function. The additivity hypothesis is of interest because it delivers interpretability and reasonably fast convergence rates for nonparametric estimators. The asymptotic distribution of the parameter estimators are found. We also derive the asymptotic distribution of the additivity test statistics under a sequence of local alternatives. We give a ranking of the different tests based on local asymptotic power. The practical performance is investigated through simulations based on the data set used by O.B. Linton and W. Härdle [Biometrika 83, No. 3, 529-540 (1996; Zbl 0866.62017)].

MSC:
62G08 Nonparametric regression and quantile regression
62G10 Nonparametric hypothesis testing
62E20 Asymptotic distribution theory in statistics
62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andrews, D.W.K., 1994. Empirical process methods in econometrics. In: Engle, R.F., MacFadden, D.F. (Eds.), Handbook of Econometrics, Vol. IV, Elsevier, Amsterdam. pp. 2247–2294.
[2] Andrews, D. W. K.; Whang, Y.: Additive interactive regression models: circumvention of the curse of dimensionality. Econometric theory 6, 466-479 (1990)
[3] Beirlant, J.; Gyorfi, L.; Lugosi, G.: On the asymptotic normality of the L1 and L2-errors in histogram density estimation. The canadian journal of statistics 22, 309-318 (1994) · Zbl 0816.62037
[4] Bickel, P. J.; Rosenblatt, M.: On some global measures of the deviations of density function estimates. Annals of statistics 1, 1071-1095 (1973) · Zbl 0275.62033
[5] Bierens, H. J.; Ploberger, W.: Asymptotic theory of integrated conditional moment tests. Econometrica 65, 1129-1153 (1997) · Zbl 0927.62085
[6] Buja, A.; Hastie, T.; Tibshirani, R.: Linear smoothers and additive models (with discussion). Annals of statistics 17, 453-555 (1989) · Zbl 0689.62029
[7] Chen, X.; Shen, X.: Sieve extremum estimates for weakly dependent data. Econometrica 66, 289-314 (1998) · Zbl 1055.62544
[8] Copas, J. B.: Binary regression models for contaminated data (with discussion). Journal of the royal statistical society series B 90, 225-265 (1988)
[9] Deaton, A.; Muellbauer, J.: Economics and consumer behavior.. (1980) · Zbl 0444.90002
[10] Dejong, P.: A central limit theorem for generalized quadratic forms. Probability theory and related fields 75, 261-277 (1987)
[11] Delgado, M.; Mora, J.: Nonparametric and semiparametric inference with discrete regressors. Econometrica 63, 1477-1484 (1995) · Zbl 0837.62035
[12] Eubank, R. L.; Spiegelman, C.: Testing the goodness-of-fit of linear models via nonparametric regression techniques. Journal of the American statistical association 85, 387-392 (1990) · Zbl 0702.62037
[13] Fan, Y.; Li, Q.: Consistent model specification tests: omitted variables and semiparametric functional forms. Econometrica 64, 865-890 (1996) · Zbl 0854.62038
[14] Fan, Y.; Li, Q.: Consistent model specification tests: kernel-based tests versus bieren’s ICM tests.. Econometric theory 16, 1016-1041 (2000) · Zbl 1180.62071
[15] Gozalo, P. L.: A consistent model specification test for nonparametric estimation of regression function models. Econometric theory 9, 451-477 (1993)
[16] Gozalo, P.L., 1995. Nonparametric specification testing with n-local power and bootstrap critical values. Brown University Working Paper 95–21.
[17] Hall, P.: Central limit theorem for integrated square error of multivariate nonparametric density estimators. Journal of multivariate analysis 14, 1-16 (1984) · Zbl 0528.62028
[18] Härdle, W.; Mammen, E.: Comparing nonparametric versus parametric regression fits. Annals of statistics 21, 1926-1947 (1993) · Zbl 0795.62036
[19] Härdle, W.; Marron, E.: Bootstrap simultaneous error bars for nonparametric regression. Annals of statistics 19, 778-796 (1991) · Zbl 0725.62037
[20] Hastie, T.; Tibshirani, R.: Generalized additive models. (1991) · Zbl 0747.62061
[21] Hausman, J. A.; Abrevaya, J.; Scott-Morton, F. M.: Misclassification of the dependent variable in a discrete-response setting. Journal of econometrics 87, 239-269 (1998) · Zbl 0943.62116
[22] Hidalgo, J., 1994. A nonparametric test for nested and non-nested models. Manuscript, LSE.
[23] Hjellvik, V.; Tjøstheim, D.: Nonparametric tests of linearity for time series. Biometrika 82, 351-368 (1995) · Zbl 0823.62044
[24] Hong, Y., 1993. Consistent specification testing using optimal nonparametric kernel estimation. Unpublished Manuscript, Cornell University.
[25] Hong, Y.: Consistent testing for serial correlation of unknown form. Econometrica 64, 837-864 (1996) · Zbl 0960.62559
[26] Hong, Y.; White, H.: Consistent specification testing via nonparametric series regression. Econometrica 63, 1133-1159 (1995) · Zbl 0941.62125
[27] Horowitz, J., 1997. Bootstrap methods in econometrics: theory and numerical performance. In: Kreps, D., Wallis, K.W., (Eds.), Advances in Economics and Econometrics, 7th World Congress, vol. 3, pp.188–222. Cambridge; Cambridge University Press.
[28] Horowitz, J., 1998. Estimating generalized additive models. Unpublished manuscript.
[29] Horowitz, J., Spokoiny, V., 1999. An adaptive rate optimal test of a parametric model against a nonparametric alternative. Unpublished manuscript. · Zbl 1017.62012
[30] Ichimura, H.: Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. Journal of econometrics 58, 71-120 (1993) · Zbl 0816.62079
[31] Kim, W.; Linton, O. B.; Hengartner, N.: A computationally efficient oracle estimator for additive nonparametric regression with bootstrap confidence intervals. Journal of computational graphics and statistics 8, 278-297 (1999)
[32] Lavergne, P.; Vuong, Q.: Nonparametric significance testing. Econometric theory 16, 576-601 (2000) · Zbl 0968.62047
[33] Leontieff, W.: Introduction to a theory of an internal structure of functional relationships. Econometrica 15, 361-373 (1947)
[34] Lewbel, A.: Consistent nonparametric hypothesis tests with an application to slutsky symmetry. Journal of econometrics 67, 379-401 (1995) · Zbl 0820.62042
[35] Linton, O. B.: Efficient estimation of additive nonparametric regression models. Biometrika 84, 469-474 (1997) · Zbl 0882.62038
[36] Linton, O. B.: Efficient estimation of generalized additive nonparametric regression models. Econometric theory 16, 502-523 (2000) · Zbl 0963.62037
[37] Linton, O. B.; Chen, R.; Wang, N.; Härdle, W.: An analysis of transformations for additive nonparametric regression. Journal of the American statistical association 92, 1512-1521 (1997) · Zbl 0912.62048
[38] Linton, O. B.; Härdle, W.: Estimating additive regression models with known links. Biometrika 83, 529-540 (1996) · Zbl 0866.62017
[39] Linton, O. B.; Nielsen, J. P.: Estimating structured nonparametric regression by the kernel method. Biometrika 82, 93-101 (1995) · Zbl 0823.62036
[40] Luce, R. D.; Tukey, J. W.: Simultaneous conjoint measurement: a new type of fundamental measurement. Journal of mathematical psychology 1, 1-27 (1964) · Zbl 0166.42201
[41] Masry, E.: Multivariate local polynomial regression for time series: uniform strong consistency and rates. Journal of time series analysis 17, 571-599 (1996) · Zbl 0876.62075
[42] Morgan, B. T.: Analysis of quantal response data.. (1992)
[43] Newey, W. K.: Kernel estimation of partial means. Econometric theory 10, 233-253 (1994)
[44] Newey, W. K.; Mcfadden, D.: Large sample estimation and hypothesis testing.. Handbook of econometrics, vol. 4 4 (1994)
[45] Nielsen, J.P., 1996. Estimating multiplicative hazard functions. Manuscript, PFA Pension.
[46] Nikitin, Y.: Asymptotic efficiency of nonparametric tests.. (1995) · Zbl 0879.62045
[47] Pakes, A.; Olley, S.: A limit theorem for a smooth class of semiparametric estimators. Journal of econometrics 65, 295-332 (1995) · Zbl 0814.62079
[48] Powell, J.; Stock, J.; Stoker, T.: Semiparametric estimation of index coefficients. Econometrica 57, 1403-1430 (1989) · Zbl 0683.62070
[49] Severance-Lossin, E.; Sperlich, S.: Estimation of derivatives for additively separable models. Statistics 33, 241-265 (1999) · Zbl 0938.62044
[50] Sperlich, S., Linton, O.B., Härdle, W., 1997. A simulation comparison between integration and backfitting methods of estimating separable nonparametric regression models. Forthcoming in TEST.
[51] Staniswalis, J. G.; Severini, T. A.: Diagnostics for assessing regression models. Journal of the American statistical association 86, 684-692 (1991) · Zbl 0736.62063
[52] Stone, C. J.: Additive regression and other nonparametric models. Annals of statistics 13, 685-705 (1985) · Zbl 0605.62065
[53] Stone, C. J.: The dimensionality reduction principle for generalized additive models. Annals of statistics 14, 592-606 (1986) · Zbl 0603.62050
[54] Tjøstheim, D.; Auestad, B.: Nonparametric identification of nonlinear time series: projections. Journal of the American statistical association 89, 1398-1409 (1994) · Zbl 0813.62036
[55] Wooldridge, J.: A test of functional form against nonparametric alternatives. Econometric theory 8, 452-475 (1992)
[56] Wu, C. F. J.: Jacknife, bootstrap and other resampling methods in regression analysis (with discussion). The annals of statistics 14, 1261-1295 (1986) · Zbl 0618.62072
[57] Yang, L.; Härdle, W.; Nielsen, J. P.: Nonparametric autoregression with multiplicative volatility and additive mean. Journal of time series analysis 20, 579-604 (1999) · Zbl 0932.62106
[58] Yatchew, A.: Nonparametric regression tests based on least squares. Econometric theory 8, 435-451 (1992)
[59] Zheng, J. X.: A consistent test of functional form via nonparametric estimation techniques. Journal of econometrics 75, 263-289 (1996) · Zbl 0865.62030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.