zbMATH — the first resource for mathematics

Operators which do not have the single valued extension property. (English) Zbl 0978.47002
A bounded linear operator \(T\) on a complex Banach space \(X\) is said to have the single valued extension property (SVEP) at \(\lambda_0\in\mathbb{C}\) if for every open disc \(D\) centered at \(\lambda_0\) the only analytic function \(f: D\to X\) satisfying \((\lambda I-T)f(\lambda)= 0\) on \(D\) is the constant function \(f= 0\). \(T\) is said to have the SVEP if it has the SVEP at every \(\lambda\) in \(\mathbb{C}\). The authors start by proving that \(T\) does not have the SVEP at \(0\) if and only if there is a nonzero vector \(x\) in \(\ker T\) such that the local spectrum of \(T\) at \(x\) is empty. This is a local version of the known result for \(T\) not to have the SVEP. Then they proceed to relate this property to the ascent of \(T\), which is the smallest positive integer \(p\) such that \(\ker T^p= \ker T^{p+1}\). It is proved that if \(T\) does not have the SVEP at \(0\), then its ascent is infinity. For a semi-Fredholm operator \(T\), these two conditions are equivalent and are also equivalent to \(0\) being a limit point of the eigenvalues of \(T\). A consequence of this is that if \(T\) has the SVEP, then its Browder spectrum and Weyl spectrum are equal. They also investigate many other properties and show how these are related to the SVEP.

47A11 Local spectral properties of linear operators
47A53 (Semi-) Fredholm operators; index theories
47A20 Dilations, extensions, compressions of linear operators
Full Text: DOI
[1] Aiena, P., Riesz multipliers on commutative semisimple Banach algebras, Arch. math. (basel), 54, 293-303, (1990) · Zbl 0682.46035
[2] Aiena, P., The weyl – browder spectrum of a multiplier, Proc. int. conf on function spaces, Contemp. math., 232, 13-21, (1999) · Zbl 0940.47027
[3] Caradus, S.R.; Pfaffenberger, W.E.; Yood, B., Calkin algebras of operators and algebras of operators on Banach spaces, (1974), Dekker New York · Zbl 0299.46062
[4] Colojoară, I.; Foiaş, C., Theory of generalized spectral operators, (1968), Gordon and Breach New York · Zbl 0189.44201
[5] Dunford, N., Spectral theory I. resolution of the identity, Pacific J. math., 2, 559-614, (1952) · Zbl 0047.35903
[6] Dunford, N., Spectral operators, Pacific J. math., 4, 321-354, (1954) · Zbl 0056.34601
[7] Dunford, N.; Schwartz, J.T., Linear operators, part I, (1967), Wiley New York
[8] Finch, J.K., The single valued extension property on a Banach space, Pacific J. math., 58, 61-69, (1975) · Zbl 0315.47002
[9] Förster, K.H., Über die invarianz eineger Räume, die zum operator T−λA gehören, Arch. math., 17, 56-64, (1966) · Zbl 0127.07903
[10] Heuser, H., Functional analysis, (1982), Wiley New York
[11] Laursen, K.B., Operators with finite ascent, Pacific J. math., 152, 323-336, (1992) · Zbl 0783.47028
[12] Laursen, K.B., The Browder spectrum through local spectral theory, Proc. int. conf. on Banach algebras, july – august 1997, blaubeuren, Germany, (1998), de Gruyter Berlin · Zbl 0916.47003
[13] Laursen, K.B.; Neumann, M.M., An introduction to local spectral theory, (2000), Clarendon Oxford · Zbl 0806.47001
[14] Mbekhta, M., Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow math. J., 29, 159-175, (1987) · Zbl 0657.47038
[15] Mbekhta, M., Sur l’unicité de la décomposition de Kato généraliseé, Acta sci. math. (Szeged), 54, 367-377, (1990) · Zbl 0758.47010
[16] Mbekhta, M., Sur la théorie spectrale locale et limite des nilpotents, Proc. amer. math. soc., 110, 621-631, (1990) · Zbl 0721.47006
[17] Mbekhta, M., Local spectrum and generalized spectrum, Proc. amer. math. soc., 112, 457-463, (1991) · Zbl 0739.47002
[18] Mbekhta, M.; Ouahab, A., Opérateur s-régulier dans un espace de Banach et théorie spectrale, Acta sci. math. (Szeged), 59, 525-543, (1994) · Zbl 0822.47003
[19] Saphar, P., Contribution á l’étude des applications linéaires dans un espace de Banach, Bull. soc. math. France, 92, 363-384, (1964) · Zbl 0139.08502
[20] Vasilescu, F.H., On the residual decomposability in dual spaces, Rev. roumaine math. pures appl., 10, 1573-1587, (1971) · Zbl 0223.47018
[21] Vrbová, P., On local spectral properties of operators in Banach spaces, Czechoslovak math. J., 23, 483-492, (1973) · Zbl 0268.47006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.