×

zbMATH — the first resource for mathematics

A matrix-free preconditioned Newton/GMRES method for unsteady Navier-Stokes solutions. (English) Zbl 0976.76049
Authors’ summary: The unsteady compressible Reynolds-averaged Navier-Stokes equations are discretized using the Osher approximate Riemann solver with fully implicit time stepping. The resulting nonlinear system at each time step is solved iteratively using a Newton/GMRES method. In the solution process, the Jacobian matrix-vector products are replaced by directional derivatives, so that the evaluation and storage of the Jacobian matrix is removed from the procedure. An effective matrix-free preconditioner is proposed to fully avoid matrix storage. Convergence rates, computational costs and computer memory requirements of the present method are compared with those of a matrix Newton/GMRES method, a four stage Runge-Kutta explicit method, and an approximate factorization sub-iteration method. Effects of convergence tolerances for the GMRES linear solver on the convergence and efficiency of Newton iteration for nonlinear systems at each time step are analysed for both matrix-free and matrix methods. Differences in the performance of the matrix-free method for laminar and turbulent flows are highlighted and analysed. Finally, we present unsteady turbulent Navier-Stokes solutions of pitching and combined translation-pitching aerofoil oscillations for unsteady shock-induced separation problems associated with rotor blade flows of forward flying helicopters.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics, general
76U05 General theory of rotating fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Qin, Notes on Numerical Fluid Mechanics 20 pp 310– (1988)
[2] Discretized Newton-relaxation solution of high resolution flux-difference split schemes. AIAA Paper 91-1539, 1991.
[3] Orkwis, AIAA Journal 31 pp 832– (1993) · Zbl 0774.76063 · doi:10.2514/3.11693
[4] Eisenstat, SIAM Journal on Scientific Computing 17 pp 16– (1996) · Zbl 0845.65021 · doi:10.1137/0917003
[5] Forsyth, Computers and Fluids 26 pp 249– (1997) · Zbl 0884.76062 · doi:10.1016/S0045-7930(96)00041-2
[6] Newton-like methods for Navier-Stokes solution. In Proceedings of the First European Computational Fluid Dynamics Conference, Vol. 1, (eds), 1992; 117-124.
[7] Xu, International Journal for Numerical Methods in Fluids 15 pp 613– (1992) · Zbl 0762.76086 · doi:10.1002/fld.1650150508
[8] Newton-Krylov-Schwarz methods in CFD. In Numerical Methods for Navier-Stokes Equations, (eds). Vieweg: Brunswick, 1994; 17-30. · doi:10.1007/978-3-663-14007-8_3
[9] Schwarz-preconditoned Newton-Krylov algorithm for low speed combustion problems. AIAA Paper 96-0911, 1996.
[10] Gear, SIAM Journal on Scientific and Statistical Computing 4 pp 583– (1983) · Zbl 0541.65051 · doi:10.1137/0904040
[11] Chan, SIAM Journal on Scientific and Statistical Computing 5 pp 533– (1984) · Zbl 0574.65043 · doi:10.1137/0905039
[12] Brown, SIAM Journal on Numerical Analysis 23 pp 610– (1986) · Zbl 0615.65078 · doi:10.1137/0723039
[13] Brown, SIAM Journal on Numerical Analysis 24 pp 407– (1987) · Zbl 0618.65037 · doi:10.1137/0724031
[14] Data parallel finite element techniques for large scale computational fluid dynamics. PhD thesis, Department of Mechanical Engineering, Stanford University, U.S.A., 1992 (Chapter 2).
[15] McHugh, AIAA Journal 32 pp 2394– (1994) · Zbl 0832.76071 · doi:10.2514/3.12305
[16] Inexact Newton’s method solutions to the incompressible Navier-Stokes and energy equations using standard and matrix-free implementations. AIAA Paper 93-3332, 1993.
[17] Knoll, AIAA Journal 34 pp 961– (1996) · Zbl 0900.76406 · doi:10.2514/3.13174
[18] Choquet, International Journal for Numerical Methods in Fluids 23 pp 177– (1996) · Zbl 0864.76057 · doi:10.1002/(SICI)1097-0363(19960730)23:2<177::AID-FLD418>3.0.CO;2-N
[19] Application of Newton-Krylov methodology to a three-dimensional unstructured Euler code. AIAA Paper 95-1733, 1995.
[20] An efficient unfactored implicit method for unsteady airfoil flows. Glasgow University Technical Report, G.U. Aero 9313, 1993.
[21] Badcock, International Journal for Numerical Methods in Fluids 23 pp 607– (1996) · Zbl 0890.76047 · doi:10.1002/(SICI)1097-0363(19960930)23:6<607::AID-FLD433>3.0.CO;2-E
[22] Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper 78-257, 1978.
[23] Osher, Mathematics of Computation 38 pp 339– (1992) · doi:10.1090/S0025-5718-1982-0645656-0
[24] Van Leer, Journal of Computational Physics 32 pp 101– (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[25] Saad, SIAM Journal on Scientific and Statistical Computing 7 pp 856– (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[26] Brown, SIAM Journal on Scientific and Statistical Computing 11 pp 450– (1990) · Zbl 0708.65049 · doi:10.1137/0911026
[27] Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall: Englewood Cliffs, NJ, 1983.
[28] Practical Optimization. Academic Press: New York, 1981. · Zbl 0503.90062
[29] Qin, Computing Systems in Engineering 3 pp 429– (1992) · doi:10.1016/0956-0521(92)90128-6
[30] Beam, AIAA Journal 16 pp 393– (1978) · Zbl 0374.76025 · doi:10.2514/3.60901
[31] Briley, Journal of Computational Physics 24 pp 372– (1977) · Zbl 0363.76018 · doi:10.1016/0021-9991(77)90029-8
[32] Numerical simulation of unsteady transonic flows using the Euler equations in integral form. ONERA Report, TP 1979-10, 1979. · Zbl 0458.76047
[33] NACA0012 oscillatory and transient pitching. Paper 3, AGARD R-702, 1982.
[34] Investigation of the transonic flow around oscillating aerofoils. NLR Report TR 77090U, 1977.
[35] Gaitonde, Aeronautical Journal 102 pp 89– (1998)
[36] Yoon, AIAA Journal 30 pp 2653– (1992) · Zbl 0762.76079 · doi:10.2514/3.48957
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.