zbMATH — the first resource for mathematics

A theorem of Littlewood, Orlicz, and Grothendieck about sums in \(L^1(0,1)\). (English) Zbl 0974.46031
In this very valuable paper for given two linear spaces \(X\) and \(Y\) we consider the space \(X\otimes Y\), the projective tensor product \(X\widehat\otimes Y\), and the injective tensor product \(X\check\otimes Y\). If \(X\) and \(Y\) are Banach spaces then in \(X\otimes Y\) we may introduce e.g. the projective crossnorm \(||_\wedge\) and the injective crossnorms \(||_\vee\). The main results of this paper are the following theorems:
(1) the space \(\ell^1\check\otimes X\) can be identified with the space \(K(c_0, X)\) (p. 383),
(2) the space \(\ell^1\widehat\otimes X\) can be identified with the space \(\ell^1(X)\) (p. 385); the same holds true for vector-valued functions,
(3) the space \(L^1(0,1)\widehat\otimes X\) is identified with the space \(L^1_X(0,1)\) (p. 387);
(4) \(L^1(0, 1)\check\otimes X\) is isometrically isomorphic to the completion of the space \(P_X(0, 1)\) (p. 389).
Very interesting and valuable are comments and remarks connected with the theorem of Grothendieck (p. 392) and the theorem of Littlewood-Orlicz-Grothendieck (p. 393).

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
Full Text: DOI
[1] Belanger, A.; Dowling, P.N., Two remarks on absolutely summing operators, Math. nachr., 136, 229-232, (1988) · Zbl 0654.47009
[2] Diestel, J., An elementary characterization of absolutely summing operators, Math. ann., 196, 101-105, (1972) · Zbl 0221.46040
[3] Diestel, J.; Jarchow, H.; Tonge, A., Absolutely summing operators, Cambridge studies in advanced mathematics, 43, (1995), Cambridge Univ. Press Cambridge
[4] Diestel, J.; Uhl, J.J., Vector measures, Amer. math. soc. surveys, 15, (1977), Am. Math. Soc Providence
[5] Dubinsky, E.; Pelczynski, A.; Rosenthal, H.P., On Banach spaces X for which π2(\(L\)∞,X)=B(\(L\)∞,X), Studia math., 44, 617-648, (1972) · Zbl 0262.46018
[6] Dvoretzky, A.; Rogers, C.A., Absolute and unconditional convergence in normed linear spaces, Proc. nat. acad. sci. USA, 36, 192-197, (1950) · Zbl 0036.36303
[7] de La Madrid, J.Gil, Measures and tensors, I, Trans. amer. math. soc., 114, 98-121, (1965) · Zbl 0186.46604
[8] Grothendieck, A., Résumé de la théorie métrique des produits tensoriels topologiques, Bol. soc. mat. São paulo, 8, 1-79, (1953/56)
[9] Hoffmann-Jørgensen, J., Sums of independent Banach space valued random variables, Studia math., 52, 159-186, (1974) · Zbl 0265.60005
[10] Kwapien, S., Isomorphic characterization of inner product spaces by orthogonal series with vector-valued coefficients, Studia math., 44, 583-595, (1972) · Zbl 0256.46024
[11] Kwapien, S., On Banach spaces containing c_{o}: A supplement to the paper by J. hoffmann-Jørgensen “sums of independent Banach space valued random variables”, Studia math., 52, 187-188, (1974) · Zbl 0295.60003
[12] Latała, R.; Oleszkiewicz, K., On the best constant in the khinchin – kahane inequality, Studia math., 109, 101-104, (1994) · Zbl 0812.60010
[13] Littlewood, J.E., On bounded bilinear forms in an infinite number of variables, Quart. J. math. (Oxford), 1, 164-174, (1930) · JFM 56.0335.01
[14] Macphail, M.S., Absolute and unconditional convergence, Bull. amer. math. soc., 53, 121-123, (1947) · Zbl 0032.35702
[15] Maurey, B.; Pisier, G., Séries de variables aléatoires vectorielles indépendantes et properiétés géometriques des espaces de Banach, Studia math., 58, 45-90, (1976) · Zbl 0344.47014
[16] Orlicz, W., Über unbedingte konvergenz in funktionenräumem (I), Studia math., 4, 33-37, (1933) · Zbl 0008.31501
[17] Paley, R.E.A.C.; Zygmund, A., On some series of functions I, Math. proc. Cambridge philos. soc., 26, 337-357, (1930) · JFM 56.0254.01
[18] Szarek, S.J., On the best constants in the Khinchin inequality, Studia math., 58, 197-208, (1976) · Zbl 0424.42014
[19] Zygmund, A., Trigonometric series, (1988), Cambridge Univ. Press Cambridge · Zbl 0628.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.