×

Finite element stabilization parameters computed from element matrices and vectors. (English) Zbl 0973.76057

Summary: We propose new ways of computing the stabilization parameters used in the stabilized finite element methods such as the streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations. The parameters are computed based on the element-level matrices and vectors, which automatically take into account the local length scales, advection field and the Reynolds number. We describe how we compute these parameters, first in the context of a time-dependent advection-diffusion equation, and then in the context of Navier-Stokes equations for unsteady incompressible flows.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[2] T.E. Tezduyar, T.J.R. Hughes, Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations, in: Proceedings of the AIAA 21st Aerospace Sciences Meeting, AIAA Paper 83-0125, Reno, Nevada, 1983
[3] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective – diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[4] Tezduyar, T.E., Stabilized finite element formulations for incompressible flow computations, Adv. appl. mech., 28, 1-44, (1991) · Zbl 0747.76069
[5] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S., Parallel finite-element computation of 3D flows, IEEE comput., 26, 27-36, (1993)
[6] T.J.R. Hughes, A.N. Brooks, A multi-dimensional upwind scheme with no crosswind diffusion, in: T.J.R. Hughes (Ed.), Finite Element Methods for Convection Dominated Flows, AMD-vol. 34, ASME, New York, 1979, pp. 19-35
[7] Donea, J., A taylor – galerkin method for convective transport problems, Int. J. numer. methods engrg., 20, 101-120, (1984) · Zbl 0524.65071
[8] Johnson, C.; Navert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. methods appl. mech. engrg., 45, 285-312, (1984) · Zbl 0526.76087
[9] Hughes, T.J.R.; Franca, L.P.; Mallet, M., A new finite element formulation for computational fluid dynamics: VI. convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective – diffusive systems, Comput. methods appl. mech. engrg., 63, 97-112, (1987) · Zbl 0635.76066
[10] G.J. Le Beau, T.E. Tezduyar, Finite element computation of compressible flows with the SUPG formulation, in: M.N. Dhaubhadel, M.S. Engelman, J.N. Reddy (Eds.), Advances in Finite Element Analysis in Fluid Dynamics, FED-vol.123, ASME, New York, 1991, pp. 21-27
[11] Aliabadi, S.; Ray, S.E.; Tezduyar, T.E., SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, Comput. mech., 11, 300-312, (1993) · Zbl 0772.76032
[12] Le Beau, G.J.; Ray, S.E.; Aliabadi, S.K.; Tezduyar, T.E., SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, Comput. methods appl. mech. engrg., 104, 397-422, (1993) · Zbl 0772.76037
[13] Mittal, S.; Tezduyar, T.E., A unified finite element formulation for compressible and incompressible flows using augumented conservation variables, Comput. methods appl. mech. engrg., 161, 229-243, (1998) · Zbl 0943.76050
[14] Tezduyar, T.E.; Park, Y.J., Discontinuity capturing finite element formulations for nonlinear convection – diffusion-reaction problems, Comput. methods appl. mech. engrg., 59, 307-325, (1986) · Zbl 0593.76096
[15] Tezduyar, T.E.; Ganjoo, D.K., Petrov – galerkin formulations with weighting functions dependent upon spatial and temporal discretization: applications to transient convection – diffusuion problmes, Comput. methods appl. mech. engrg., 59, 49-71, (1986) · Zbl 0604.76077
[16] Franca, L.P.; Frey, S.L.; Hughes, T.J.R., Stabilized finite element methods: I. application to the advective – diffusive model, Comput. methods appl. mech. engrg., 95, 253-276, (1992) · Zbl 0759.76040
[17] E. Süli, Private communication, 1999
[18] A. Roshko, On the development of turbulent wakes from vortex street, NACA report 1191, NACA, 1954
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.