×

zbMATH — the first resource for mathematics

A numerical study of a posteriori error estimators for convection-diffusion equations. (English) Zbl 0973.76049
Summary: This paper presents a numerical study of a posteriori error estimators for convection-diffusion equations. The study involves the gradient indicator, an a posteriori error estimator which is based on gradient recovery, three residual-based error estimators for different norms, and two error estimators which are defined by solutions of local Neumann problems. They are compared with respect to the reliable estimation of global error and with respect to the accuracy of computed solutions on adaptively refined grids. The numerical study shows for both criteria of comparison that none of the considered error estimators works satisfactorily in all tests.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection
65N15 Error bounds for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975
[2] Ainsworth, M.; Oden, J.T., A posteriori error estimators for second order elliptic systems part 2. an optimal order process for calculating self equilibrated fluxes, Comput. math. appl., 26, 75-87, (1993) · Zbl 0789.65083
[3] Ainsworth, M.; Oden, J.T., A unified approach to a posteriori error estimation using element residual methods, Numer. math., 65, 23-50, (1993) · Zbl 0797.65080
[4] Ainsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, Comput. meth. appl. mech. engrg., 142, 1-88, (1997) · Zbl 0895.76040
[5] Angermann, L., Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems, Computing, 55, 305-323, (1995) · Zbl 0839.65114
[6] Babuška, I.; Rheinboldt, W.C., Error estimates for adaptive finite element computation, SIAM J. numer. anal., 15, 4, 283-301, (1978) · Zbl 0398.65069
[7] Bank, R.E.; Weiser, A., Some a posteriori error estimators for elliptic partial differential equations, Math. comp., 44, 283-301, (1985) · Zbl 0569.65079
[8] Becker, R.; Rannacher, R., A feedback approach to error control in finite element methods: basic analysis and examples, East – west J. numer. math., 4, 4, 237-264, (1996) · Zbl 0868.65076
[9] R. Becker, R. Rannacher, Weighted a posteriori error control in FE methods, in: H.G. Bock et al. (Ed.), ENUMATH 97 - Proceedings of the Second European Conference on Numerical Mathematics and Advanced Applications, World Scientific, Singapore, 1998, pp. 621-637 · Zbl 0968.65083
[10] P.G. Ciarlet, Basic error estimates for elliptic problems, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis II, North-Holland, Amsterdam, 1991, pp. 19-351 · Zbl 0875.65086
[11] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Introduction to adaptive methods for differential equations, Acta numerica, 105-158, (1995) · Zbl 0829.65122
[12] T.J.R. Hughes, A.N. Brooks, A multidimensional upwind scheme with no crosswind diffusion, in: T.J.R. Hughes (Ed.), Finite Element Methods for Convection Dominated Flows AMD, vol. 34, ASME, New York, 1979 · Zbl 0423.76067
[13] U. Iben, Eine adaptive Strategie zur Lösung von Konvektion-Diffusion-Gleichungen auf der Basis von Waveletdekompositionen, Ph.D. thesis, TU Dresden, 1998 · Zbl 0888.76056
[14] V. John, Parallele Lösung der inkompressiblen Navier-Stokes Gleichungen auf adaptiv verfeinerten Gittern. PhD thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 1997
[15] John, V., A posteriori L2-error estimates for the nonconforming P1/P0-finite element discretization of the Stokes equations, J. comput. appl. math., 96, 2, 99-116, (1998)
[16] K.W. Morton, Numerical Solution of Convection-Diffusion Problems, Kluwer Academic Publishers, Dordrecht, 1995
[17] A. Papastavrou, Adaptive Finite Element Methoden für Konvektions-Diffusions-Probleme, Ruhr-Universität Bochum, 1998
[18] H.-G. Roos, M. Stynes, L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 1996 · Zbl 0844.65075
[19] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley and Teubner, 1996
[20] Verfürth, R., A posteriori error estimates for nonlinear problems. Lr-estimates for finite element discretizations of elliptic equations, Math. comp., 67, 224, 1335-1360, (1998) · Zbl 0907.65090
[21] Verfürth, R., A posteriori error estimators for convection – diffusion equations, Numer. math., 80, 641-663, (1998) · Zbl 0913.65095
[22] Zienkiewicz, O.C.; Zhu, J.Z., A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. numer. meth. engrg., 24, 2, 337-357, (1987) · Zbl 0602.73063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.