×

zbMATH — the first resource for mathematics

A generalized-\(\alpha\) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. (English) Zbl 0973.76048
Summary: A generalized-\(\alpha\) method is developed and analyzed for linear, first-order systems. The method is then extended to the filtered Navier-Stokes equations within the context of a stabilized finite element method. The formulation is studied through the application to laminar flow past a circular cylinder and turbulent flow past a long, transverse groove. The method is formulated to obtain a second-order accurate family of time integrators whose high-frequency amplification factor is the sole free parameter. Such an approach allows the replication of midpoint rule (zero damping), Gear’s method (maximal damping), or anything in between.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shakib, F.; Hughes, T.J.R., A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms, Comput. methods appl. mech. eng., 87, 35-58, (1991) · Zbl 0760.76051
[2] Shakib, F.; Hughes, T.J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. the compressible Euler and navier – stokes equations, Comput. methods appl. mech. eng., 89, 141-219, (1991) · Zbl 0838.76040
[3] Tezduyar, T.E.; Behr, M.; Liou, J., New strategy for finite element computations involving moving boundaries and interfaces. the deforming-spatial-domain/space-time procedure. I. the concept and the preliminary numerical tests, Comput. methods appl. mech. eng., 94, 339-351, (1992) · Zbl 0745.76044
[4] Tezduyar, T.E.; Behr, M.; Liou, J., New strategy for finite element computations involving moving boundaries and interfaces. the deforming-spatial-domain/space-time procedure. II. computation of free-surface flows two-liquid flows and flows with drifting cylinders, Comput. methods appl. mech. eng., 94, 339-351, (1992) · Zbl 0745.76044
[5] Johnson, A.A.; Tezduyar, T.E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. methods appl. mech. eng., 119, 73-94, (1994) · Zbl 0848.76036
[6] Johnson, A.A.; Tezduyar, T.E., 3D simulation of fluid-particle interactions with the number of particles reaching 100, Comput. methods appl. mech. eng., 145, 301-321, (1997) · Zbl 0893.76043
[7] Behr, M.; Hastreiter, D.; Mittal, S.; Tezduyar, T.E., Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries, Comput methods appl. mech. eng., 123, 309-316, (1996)
[8] Chung, J.; Hulbert, G.M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J. appl. mech., 60, 371-375, (1993) · Zbl 0775.73337
[9] Moin, P.; Squires, K.; Cabot, W.H.; Lee, S., A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. fluids, 3, 2746-2757, (1991) · Zbl 0753.76074
[10] P. Moin, J. Jimenéz, Large-eddy simulation of complex turbulent flows, in: AIAA 24th Fluid Dynamics Conference, AIAA-93-3099, 1993
[11] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H., A dynamic subgrid-scale eddy viscosity model, Phys. fluids, 3, 1760, (1991) · Zbl 0825.76334
[12] Jansen, K.E., Large-eddy simulation using unstructured grids, (), 117-128
[13] Jansen, K.E., A stabilized finite element method for computing turbulence, Comput. methods appl. mech. eng., 174, 299-317, (1999) · Zbl 0958.76041
[14] G. Hauke, A unified approach to compressible and incompressible flows and a new entropy-consistent formulation of the k-ϵ model, PhD thesis, Stanford University, 1995
[15] Hauke, G.; Hughes, T.J.R., A comparative study of different sets of variables for solving compressible and incompressible flows, Comput. methods appl. mech. eng., 153, 1-44, (1998) · Zbl 0957.76028
[16] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. eng., 32, 199-259, (1982) · Zbl 0497.76041
[17] F. Shakib, Finite element analysis of the compressible Euler and Navier-Stokes equations, PhD thesis, Stanford University, 1989
[18] Franca, L.P.; Frey, S., Stabilized finite element methods: II. the incompressible Navier-Stokes equations, Comput. methods appl. mech. eng., 99, 209-233, (1992) · Zbl 0765.76048
[19] Hauke, G.; Hughes, T.J.R., A unified approach to compressible and incompressible flows, Comput. methods appl. mech. eng., 113, 389-396, (1994) · Zbl 0845.76040
[20] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, NJ
[21] Gear, C.W., Numerical initial value problems in ordinary differential equations, (1971), Prentice-Hall Englewood Cliffs, NJ · Zbl 0217.21701
[22] Saad, Y.; Schultz, M.H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. statist. comput., 7, 856-869, (1986) · Zbl 0599.65018
[23] Johan, Z.; Hughes, T.J.R.; Shakib, F., A globally convergent matrix-free algorithm for implicit time marching schemes arising in finite element analysis, Comput. methods appl. mech. eng., 87, 281-304, (1991) · Zbl 0760.76070
[24] C.H. Whiting, K.E. Jansen, A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis, Internat. J. Numer. Meth. Fluids, in press · Zbl 0990.76048
[25] K.E. Jansen, Large-eddy simulation of flow around a NACA 4412 airfoil using unstructured grids, in: Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford University, 1996, pp. 225-232
[26] F. Bastin, Jet noise using large eddy simulation, in: Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford University, 1996, pp. 115-132
[27] White, F., Viscous flow, (1974), McGraw-Hill New York
[28] C.H. Whiting, K.E. Jansen, S. Dey, Hierarchical basis in stabilized finite element methods for compressible flows, Comput. Methods Appl. Mech. Eng., in press · Zbl 1048.76033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.