Opic, Bohumír; Trebels, Walter Bessel potentials with logarithmic components and Sobolev-type embeddings. (English) Zbl 0973.46021 Anal. Math. 26, No. 4, 299-319 (2000). This very technical and well written paper treats the problem of existence of continuous embeddings of the Sobolev space \(W_k^P({\mathcal R}^n)\) of \(L^p({\mathcal R}^n)\) integrable functions whose (weak) derivatives of order \(\leq k\) (\(k\in{\mathcal N}\) fixed) are also integrable. Introducing the spaces of Bessel potentials \[ H^{\sigma}(L^p)({\mathcal R}^n)=\{u: u=g_{\sigma}\ast f, f\in L^p\},\;1\leq p\leq \infty, \] and \[ L^p_{\sigma,\alpha}({\mathcal R}^n) =H^{\sigma,\alpha}(L^p)({\mathcal R}^n)= \{u: u=g_{\sigma,\alpha}\ast f, f\in L^p\},\;||u||_{\sigma,\alpha}:=||f||_p, \] where the Bessel kernels are given by their Fourier transforms \[ {\hat g}_{\sigma}(\xi)=(1+|\xi|^2)^{-\sigma/2}, \sigma>0; \] \[ {\hat g}_{\sigma,\alpha}(\xi)=(1+|\xi|^2)^{-\sigma/2}(1+ \log{(1+|\xi|^2)})^{-\alpha}, \sigma\geq 0, \alpha\in{\mathcal R}, \] the author improves on the known embedding (using \(g_{\sigma}\)) \[ L_{\sigma^{*}}^{n/\sigma}({\mathcal R}^n) \hookrightarrow L^{\infty}({\mathcal R}^n), \sigma^{*}>0, 0<\sigma<n \] with the aid of the smoother kernel \(g_{\sigma,\alpha}\). The paper is written compactly and contains quite a number of results (including the case where either the target space is near \(L^{\infty}\) or where the source space is near to \(L^1\)). Reviewer: Marcel G.de Bruin (Delft) Cited in 5 Documents MSC: 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 47B38 Linear operators on function spaces (general) 47G10 Integral operators 42B35 Function spaces arising in harmonic analysis 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) Keywords:continuous embedding; (quasi) normed spaces; Sobolev spaces; Lipschitz continuity; Orlicz spaces PDF BibTeX XML Cite \textit{B. Opic} and \textit{W. Trebels}, Anal. Math. 26, No. 4, 299--319 (2000; Zbl 0973.46021) Full Text: DOI