zbMATH — the first resource for mathematics

Chern number and edge states in the integer quantum Hall effect. (English) Zbl 0972.81712
Summary: We consider the integer quantum Hall effect on a square lattice in a uniform rational magnetic field. The relation between two different interpretations of the Hall conductance as topological invariants is clarified. One is the Thouless-Kohmoto-Nightingale-den Nijs (TKNN) integer in the infinite system and the other is a winding number of the edge state. In the TKNN form of the Hall conductance, a phase of the Bloch wave function defines U(1) vortices on the magnetic Brillouin zone and the total vorticity gives \(\sigma_{xy}\). We find that these vortices are given by the edge states when they are degenerate with the bulk states.

81V80 Quantum optics
Full Text: DOI
[1] B. I. Halperin, Phys. Rev. B 25 pp 2185– (1982) · doi:10.1103/PhysRevB.25.2185
[2] D. J. Thouless, Phys. Rev. Lett. 49 pp 405– (1982) · doi:10.1103/PhysRevLett.49.405
[3] R. B. Laughlin, Phys. Rev. B 23 pp 5632– (1981) · doi:10.1103/PhysRevB.23.5632
[4] M. Kohmoto, Ann. Phys. (N.Y.) 160 pp 355– (1985) · doi:10.1016/0003-4916(85)90148-4
[5] J. Avron, Phys. Rev. Lett. 51 pp 51– (1983) · doi:10.1103/PhysRevLett.51.51
[6] Y. Hatsugai, Phys. Rev. B 48 pp 11851– (1993) · doi:10.1103/PhysRevB.48.11851
[7] Y. Hatsugai, Bull. Am. Phys. Soc. 38 pp 397– (1993)
[8] M. Kohmoto, Phys. Rev. B 39 pp 11943– (1989) · doi:10.1103/PhysRevB.39.11943
[9] X. G. Wen, Nucl. Phys. B316 pp 641– (1989) · doi:10.1016/0550-3213(89)90062-X
[10] M. Toda, in: Theory of Nonlinear Lattices (1981) · Zbl 0465.70014 · doi:10.1007/978-3-642-96585-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.