×

zbMATH — the first resource for mathematics

Entropy and area. (English) Zbl 0972.81649
Summary: The ground-state density matrix for a massless free field is traced over the degrees of freedom residing inside an imaginary sphere; the resulting entropy is shown to be proportional to the area (and not the volume) of the sphere. Possible connections with the physics of black holes are discussed.

MSC:
81T99 Quantum field theory; related classical field theories
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J. D. Bekenstein, Phys. Rev. D 7 pp 2333– (1973) · Zbl 1369.83037
[2] J. D. Bekenstein, Phys. Rev. D 9 pp 3292– (1974)
[3] S. W. Hawking, Commun. Math. Phys. 43 pp 199– (1975) · Zbl 1378.83040
[4] G. W. Gibbons, Phys. Rev. D 15 pp 2752– (1977)
[5] S. W. Hawking, in: General Relativity: An Einstein Centenary Survey (1979) · Zbl 0424.53001
[6] W. H. Zurek, Phys. Rev. Lett. 49 pp 1683– (1982)
[7] D. N. Page, Phys. Rev. Lett. 50 pp 1013– (1983)
[8] G. ’t Hooft, Nucl. Phys. B355 pp 138– (1990)
[9] G. W. Gibbons, Int. J. Mod. Phys. D 1 pp 335– (1992) · Zbl 0935.83513
[10] C. Nappi, Mod. Phys. Lett. A 7 pp 3337– (1992) · Zbl 1021.81870
[11] L. Bombelli, Phys. Rev. D 34 pp 373– (1986) · Zbl 1222.83077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.