×

zbMATH — the first resource for mathematics

Inverse atomic densities and inequalities among density functionals. (English) Zbl 0970.81101
Summary: Rigorous relationships among physically relevant quantities of atomic systems (e.g., kinetic, exchange, and electron-nucleus attraction energies, information entropy) are obtained and numerically analyzed. They are based on the properties of inverse functions associated to the one-particle density of the system. Some of the new inequalities are of great accuracy and/or improve similar ones previously known, and their validity extends to other many-fermion systems and to arbitrary dimensionality.

MSC:
81V45 Atomic physics
81-04 Software, source code, etc. for problems pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevA.8.160 · doi:10.1103/PhysRevA.8.160
[2] DOI: 10.1103/PhysRevA.38.6017 · doi:10.1103/PhysRevA.38.6017
[3] Lenz F., Nucl. Phys. A 176 pp 513– (1971) · doi:10.1016/0375-9474(71)90933-X
[4] Friedrich J., Nucl. Phys. A 183 pp 523– (1972) · doi:10.1016/0375-9474(72)90354-5
[5] DOI: 10.1063/1.463710 · doi:10.1063/1.463710
[6] DOI: 10.1063/1.463710 · doi:10.1063/1.463710
[7] DOI: 10.1103/PhysRevA.40.35 · doi:10.1103/PhysRevA.40.35
[8] Angulo J.C., J. Phys. B 26 pp L431– (1993) · doi:10.1088/0953-4075/26/15/001
[9] Antol─▒\'n J., Phys. Rev. A 48 pp 4149– (1993) · doi:10.1103/PhysRevA.48.4149
[10] Zarzo A., Z. Phys. D: At., Mol. Clusters 37 pp 295– (1996) · doi:10.1007/s004600050043
[11] Angulo J.C., Eur. Phys. J. D 7 pp 479– (1999) · doi:10.1007/s100530050375
[12] DOI: 10.1002/j.1538-7305.1948.tb00917.x · doi:10.1002/j.1538-7305.1948.tb00917.x
[13] DOI: 10.1002/j.1538-7305.1948.tb00917.x · doi:10.1002/j.1538-7305.1948.tb00917.x
[14] DOI: 10.1016/S0092-640X(74)80016-1 · doi:10.1016/S0092-640X(74)80016-1
[15] DOI: 10.1016/0092-640X(81)90012-7 · doi:10.1016/0092-640X(81)90012-7
[16] Angulo J.C., Phys. Rev. A 50 pp 311– (1994) · doi:10.1103/PhysRevA.50.311
[17] Angulo J.C., Phys. Rev. A 42 pp 641– (1990) · doi:10.1103/PhysRevA.43.4069.2
[18] Angulo J.C., Phys. Rev. A 43 pp 4069– (1991) · doi:10.1103/PhysRevA.43.4069.2
[19] DOI: 10.1063/1.476733 · doi:10.1063/1.476733
[20] DOI: 10.1103/PhysRevA.49.726 · doi:10.1103/PhysRevA.49.726
[21] Bialynicky-Birula I., Commun. Math. Phys. 44 pp 129– (1975) · doi:10.1007/BF01608825
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.