×

zbMATH — the first resource for mathematics

\(Z_N\) orbifold models. (English) Zbl 0970.81061
Summary: \(Z_N\) orbifolds are studied because of the possibility they offer to dispose of the six extra dimensions of \(E_8\times E_8'\) heterotic string theory and in order to obtain a realistic effective low-energy theory. All the independent embeddings of \(\text{Z}_N\) rotations are classified using both procedures with shifts and rotations of an \(E_8\times E_8\) root lattice. \(SU_5\times U^4_1\times(\text{hidden gauge group})\) models are elucidated as examples among the models obtained. It is explained how the \(Z_N\) orbifold models are modified when the Wilson-line mechanism turns on by making use of an example of a semi-standard model derived from the \(Z_7\) orbifold.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
22E70 Applications of Lie groups to the sciences; explicit representations
81V05 Strong interaction, including quantum chromodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gross, D.J.; Harvey, J.A.; Martinec, E.; Rohm, R.; Gross, D.J.; Harvey, J.A.; Martinec, E.; Rohm, R., Nucl. phys., Nucl. phys., B267, 75, (1986)
[2] Candelas, P.; Horowitz, G.; Strominger, A.; Witten, E., Nucl. phys., B258, 46, (1985)
[3] Dixon, L.; Harvey, J.; Vafa, C.; Witten, E.; Dixon, L.; Harvey, J.; Vafa, C.; Witten, E., Nucl. phys., Nucl. phys., B274, 285, (1986)
[4] Kawai, H.; Lewellyn, D.; Tye, A.H.; Kawai, H.; Lewellyn, D.; Tye, A.H.; Antoniadis, I.; Bachas, C.; Kounnas, C., Phys. rev. lett., Nucl. phys., Nucl. phys., B289, 87, (1987)
[5] Gepner, D.; Gepner, D.; Kazama, Y.; Suzuki, H., Phys. lett., Nucl. phys., Nucl. phys., B321, 232, (1989)
[6] Cvetič, M.; Cvetič, M.; Cvetič, M., (), Phys. rev. lett., Phys. rev. lett., 59, 2829, (1987)
[7] Font, A.; Ibáñez, L.E.; Mondagón, M.; Quevedo, F.; Ross, G.G., Phys. lett., B227, 34, (1989)
[8] Ibáñez, L.E.; Kim, J.E.; Nilles, H.P.; Quevedo, F.; Mahapatra, S., Phys. lett., Phys. lett., B223, 47, (1989)
[9] Ibáñez, L.E.; Mas, J.; Nilles, H.P.; Quevedo, F., Nucl. phys., B301, 157, (1988)
[10] Katsuki, Y.; Kawamura, Y.; Kobayashi, T.; Ohtsubo, N.; Katsuki, Y.; Kawamura, Y.; Kobayashi, T.; Ohtsubo, N.; Ono, Y.; Tanioka, K.; Katsuki, Y.; Kawamura, Y.; Kobayashi, T.; Ohtsubo, N.; Ono, Y.; Tanioka, K., Phys. lett., Phys. lett., Phys. lett., B227, 381, (1989)
[11] Markushevich, D.; Olshanetsky, M.; Perelomov, A., Commun. math. phys., 111, 247, (1987)
[12] Senda, I.; Sugamoto, A., Nucl. phys., B302, 291, (1988)
[13] Katsuki, Y.; Kawamura, Y.; Kobayashi, T.; Ohtsubo, N.; Tanioka, K., Prog. theor. phys., 82, 171, (1989)
[14] Y. Katsuki, Y. Kawamura, T. Kobayashi, N. Ohtsubo, Y. Ono and K. Tanioka, Tables in Z_{N} orbifold models, Kanazawa Univ. preprint DPKU-8904 · Zbl 0970.81061
[15] Ibáñez, L.E.; Nilles, H.P.; Quevedo, F., Phys. lett., B187, 25, (1987)
[16] Bourbaki, N., Groupes et algèbres de Lie, (1968), Hermann Paris, chaps. IV-VI · Zbl 0186.33001
[17] Kac, V.; Peterson, D.H.; Hollowood, T.J.; Myhill, R.G., (), Int. J. mod. phys., A3, 899, (1988)
[18] Ibáñez, L.E.; Nilles, H.P.; Quevedo, F., Phys. lett., B192, 332, (1987)
[19] Vafa, C., Nucl. phys., B273, 592, (1986)
[20] Font, A.; Ibáñez, L.E.; Nilles, H.P.; Quevedo, F., Nucl. phys., B307, 109, (1988)
[21] Barr, S.M.; Derendinger, J.P.; Kim, J.E.; Nanopoulos, D.V.; Antoniades, I.; Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.; Ellis, J.; Hagelin, J.S.; Kelley, S.; Nanopoulos, D.V., Phys. lett., Phys. lett., Phys. lett., Nucl. phys., B311, 1, (1988)
[22] Dine, M.; Seiberg, N.; Witten, E.; Atick, J.; Dixon, L.; Sen, A.; Dine, M.; Ichinose, I.; Seiberg, N., Nucl. phys., Nucl. phys., Nucl. phys., B293, 253, (1987)
[23] Casas, J.A.; Katehou, E.K.; Muñoz, C.; Casas, J.A.; Muñoz, C.; Casas, J.A.; Muñoz, C.; Casas, J.A.; Muñoz, C., Nucl. phys., Phys. lett., Phys. lett., Phys. lett., B214, 63, (1988)
[24] Hamidi, S.; Vafa, C.; Dixon, L.; Friedan, D.; Martinec, E.; Shenker, S., Nucl. phys., Nucl. phys., B282, 13, (1987)
[25] Font, A.; Ibáñez, L.E.; Quevedo, F., Phys. lett., B217, 272, (1989)
[26] H. Miyata and N. Ohtsubo, Weyl orbifold models, Kanazawa Univ. preprint DPKU-8905
[27] Baillin, D.; Love, A.; Thomas, S., Nucl. phys., B288, 431, (1987)
[28] Font, A.; Ibáñez, L.E.; Quevedo, F.; Sierra, A.; Casas, J.A.; Mondragon, M.; Muñoz, C.; Casas, J.A.; Muñoz, C., Cern-th-5926/89, Outp-89-13p, Outp-89-27p, (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.