×

zbMATH — the first resource for mathematics

Retarded differential equations. (English) Zbl 0970.65079
The author considers the background material in retarded differential equations and develops a theoretical foundation for the basic numerics, and give some results not previously published on existence, uniqueness and convergence. He also suggests further study of stiffness in retarded equations.
Reviewer: R.S.Dahiya (Ames)

MSC:
65L05 Numerical methods for initial value problems
34K28 Numerical approximation of solutions of functional-differential equations (MSC2010)
Software:
PDDE-CONT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aitken (Ed.), R.C., Stiff computation, (1985), Oxford University Press Oxford · Zbl 0607.65041
[2] Ascher, U.M.; Petzold, L.R., The numerical solution of delay – differential – algebraic equations of retarded and neutral type, SIAM J. numer. anal., 32, 1635-1657, (1995) · Zbl 0837.65070
[3] C.T.H. Baker, G.A. Bocharov, A. Filiz, N.J. Ford, C.A.H. Paul, F.A. Rihan, A. Tang, R.M. Thomas, H. Tian, D.R. Willé, Numerical modelling by delay and Volterra functional differential equations, in: E.A. Lipitakis (Ed.), Topics in Computer Mathematics and its Applications, LEA Athens, Hellas, 1999, pp. 113-137. ISBN 960-85176-6-4.
[4] Baker, C.T.H.; Bocharov, G.A.; Paul, C.A.H.; Rihan, F.A., Modelling and analysis of time-lags in cell proliferation, J. math. biol., 37, 341-371, (1998) · Zbl 0908.92026
[5] C.T.H. Baker, G.A. Bocharov, F.A. Rihan, A report on the use of delay differential equations in numerical modelling in the biosciences, MCCM Technical Report 343, 1999. ISSN 1360-1725.
[6] C.T.H. Baker, E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations. MCCM Technical Report 345, 1999. ISSN 1360-1725.
[7] Baker, C.T.H.; Paul, C.A.H., Computing stability regions — runge – kutta methods for delay differential equations, IMA J. numer. anal., 14, 347-362, (1994) · Zbl 0805.65082
[8] Baker, C.T.H.; Paul, C.A.H., A global convergence theorem for a class of parallel continuous explicit runge – kutta methods and vanishing lag delay differential equations, SIAM J. numer. anal., 33, 1559-1576, (1996) · Zbl 0855.65081
[9] Baker, C.T.H.; Paul, C.A.H., Pitfalls in parameter estimation for delay differential equations, SIAM J. sci. comput., 18, 305-314, (1997) · Zbl 0867.65032
[10] Baker, C.T.H.; Paul, C.A.H.; Willé, D.R., Issues in the numerical solution of evolutionary delay differential equations, Adv. comput. math., 3, 171-196, (1995) · Zbl 0832.65064
[11] C.T.H. Baker, F.A. Rihan, Sensitivity analysis of parameters in modelling with delay-differential equations. MCCM Technical Report 349, 1999 ISSN 1360-1725.
[12] C.T.H. Baker, A. Tang, Stability of non-linear delay integro-differential equations via approximating equations, MCCM Technical Report 327, 1998. ISSN 1360-1725.
[13] C.T.H. Baker, A. Tang, Generalized Halanay inequalities for Volterra functional differential equations and discretized versions, in: C. Corduneanu, I.W. Sandberg, (Eds.), Volterra Equations and Applications, Gordon and Breach, Amsterdam, 1999, pp. 39-55. ISBN 1023-6155. · Zbl 0958.45005
[14] Bakke, V.L.; Jackiewicz, Z., Stability analysis of linear multistep methods for delay differential equations, Internat. J. math. math. sci., 9, 447-458, (1986) · Zbl 0622.65057
[15] Barwell, V.K., Special stability problems for functional differential equations, Bit, 15, 130-135, (1975) · Zbl 0306.65044
[16] Bellen, A., One-step collocation for delay differential equations, J. comput. appl. math., 10, 275-283, (1984) · Zbl 0538.65047
[17] Bellen, A., Constrained mesh methods for functional differential equations, Internat. schriftenreihe numer. math., 74, 52-70, (1985) · Zbl 0577.65125
[18] Bellen, A.; Guglielmi, N.; Ruehli, A., On a class of stable methods for linear systems of delay differential equations of neutral type, IEEE trans. circuits systems, 46, 212-216, (1999) · Zbl 0952.94015
[19] Bellen, A.; Guglielmi, N.; Torelli, L., Asymptotic stability properties of theta-methods for the pantograph equation, Appl. numer. math., 24, 279-293, (1997) · Zbl 0878.65064
[20] Bellen, A.; Guglielmi, N.; Zennaro, M., On the contractivity and asymptotic stability of systems of delay differential equations of neutral type, Bit, 39, 1-24, (1999) · Zbl 0917.65071
[21] A. Bellen, N. Guglielmi, M. Zennaro, Numerical stability of nonlinear delay differential equations of neutral type, this issue, J. Comput. Appl. Math. 125 (2000) 251-263. · Zbl 0980.65077
[22] Bellen, A.; Jackiewicz, Z.; Zennaro, M., Stability analysis of one-step methods for neutral delay-differential equations, Numer. math., 52, 605-619, (1988) · Zbl 0644.65049
[23] A. Bellen, S. Maset, Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems Numer. Math. 84 (2000) 351-374. · Zbl 0949.65072
[24] Bellen, A.; Zennaro, M., Numerical solution of delay differential equations by uniform corrections to an implicit runge – kutta method, Numer. math., 47, 301-316, (1985) · Zbl 0577.65064
[25] Bellen, A.; Zennaro, M., Strong contractivity properties of numerical methods for ordinary and delay differential equations, Appl. numer. math., 9, 321-346, (1992) · Zbl 0749.65042
[26] A. Bellen, M. Zennaro, Numerical Methods for Delay Differential Equations, Oxford University Press, Oxford, in preparation. · Zbl 1038.65058
[27] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, book in preparation. · Zbl 1059.65122
[28] M.D. Buhmann, A. Iserles, Numerical analysis of functional equations with a variable delay, Pitman Research Notes Mathematics Series, vol. 260, (1991), pp. 17-33, Longman Sci. Tech., Harlow, 1992. · Zbl 0795.65048
[29] Buhmann, M.D.; Iserles, A.; Nørsett, S.P., Runge – kutta methods for neutral differential equations, Wssiaa, 2, 85-98, (1993) · Zbl 0834.65061
[30] O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, H-O. Walther, Delay Equations, Springer, New York, 1994. ISBN 0-387-94416-8. · Zbl 0826.34002
[31] L.E. El’sgolts, S.B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Academic Press, New York, 1973. L\scibr. of C\scongress C\scat. N\sco. 73-811.
[32] K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifurcation analysis of delay differential equations, this issue, J. Comput. Appl. Math. 125 (2000) 265-275. · Zbl 0970.65090
[33] Engelborghs, K.; Roose, D., Smoothness loss of periodic solutions of a neutral functional-differential equation: on a bifurcation of the essential spectrum, Dynamics stability systems, 14, 255-273, (1999) · Zbl 0936.34057
[34] Engelborghs, K.; Roose, D., Numerical computation of stability and detection of Hopf bifurcations of steady state solutions of delay differential equations, Adv. comput. math., 10, 271-289, (1999) · Zbl 0929.65054
[35] Engelborghs, K.; Roose, D.; Luzyanina, T., Bifurcation analysis of periodic solutions of neutral functional-differential equations: a case study, Internat. J. bifur. chaos appl. sci. eng., 8, 1889-1905, (1998) · Zbl 0941.34070
[36] W.H. Enright, H. Hayashi, Convergence analysis of the solution of retarded and neutral delay differential equations by continuous numerical methods, SIAM J. Numer. Anal. 35 572-585. · Zbl 0914.65084
[37] Fowler, A.C., An asymptotic analysis of the delayed logistic equation when the delay is large, IMA J. appl. math., 28, 41-49, (1982) · Zbl 0488.34075
[38] N.J. Ford, V. Wulf, How do numerical methods perform for delay differential equations undergoing a Hopf bifurcation? this issue, J. Comput. Appl. Math.125 (2000) 277-285. · Zbl 0971.65068
[39] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic, London, 1992. ISBN 0-7923-1594-4. · Zbl 0752.34039
[40] Guglielmi, N., On the asymptotic stability properties of runge – kutta methods for delay differential equations, Numer. math., 77, 467-485, (1997) · Zbl 0885.65092
[41] Guglielmi, N., Delay dependent stability regions of theta-methods for delay differential equations, IMA J. numer. anal., 18, 399-418, (1998) · Zbl 0909.65050
[42] Guglielmi, N.; Hairer, E., Order stars and stability for delay differential equations, Numer. math., 83, 371-383, (1999) · Zbl 0937.65079
[43] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations - I, Springer, Berlin, 1987. ISBN 3-540-17145-2.
[44] A. Halanay, Differential Equations — Stability, Oscillations, Time Lags Academic Press, New York, 1966. L\scibr. of C\scongress C\scat. N\sco. 65-25005.
[45] H. Hayashi, Numerical solution of delay differential equations, Ph.D. Thesis, University of Toronto, 1995.
[46] R. Hauber, Numerische Behandlung von retardierten differential-algebraischen Gleichungen, Doctoral Thesis, Universität München, 1994. · Zbl 0846.65033
[47] in ’t Hout, K.J., The stability of a class of runge – kutta methods for delay differential equations, Appl. numer. math., 9, 347-355, (1992) · Zbl 0749.65048
[48] in ’t Hout, K.J., A new interpolation procedure for adapting runge – kutta methods to delay differential equations, Bit, 32, 634-649, (1992) · Zbl 0765.65069
[49] K.J. in ’t Hout, Runge-Kutta methods in the numerical solution of delay differential equations, Ph.D. Thesis, The University of Leiden, 1992.
[50] in ’t Hout, K.J.; Lubich, C., Periodic solutions of delay differential equations under discretization, Bit, 38, 72-91, (1998) · Zbl 0904.65066
[51] in ’t Hout, K.J.; Spijker, M.N., Stability analysis of numerical methods for delay differential equations, Numer. math., 59, 807-814, (1991) · Zbl 0724.65084
[52] Huang, C., Dissipativity of runge – kutta methods for dynamical systems with delay, IMA J. numer. anal., 20, 153-166, (2000) · Zbl 0944.65134
[53] Huang, C.; Fu, H.; Li, S.; Chen, G., Stability analysis of runge – kutta methods for non-linear delay differential equations, Bit, 39, 270-280, (1999) · Zbl 0930.65090
[54] Huang, C.; Li, S.; Fu, H.; Chen, G., Stability and error analysis of one-leg methods for nonlinear delay differential equations, J. comput. appl. math., 103, 263-279, (1999) · Zbl 0948.65078
[55] Iserles, A., Numerical analysis of delay differential equations with variable delays, Ann. numer. math., 1, 133-152, (1994) · Zbl 0828.65083
[56] Iserles, A., Exact and discretized stability of the pantograph equation, Appl. numer. math., 24, 295-308, (1997) · Zbl 0880.65058
[57] Jackiewicz, Z., One-step methods of any order for neutral functional differential equations, SIAM J. numer. anal., 21, 486-511, (1984) · Zbl 0562.65056
[58] Jankowski, T.; Kwapisz, M., Convergence of numerical methods for systems of neutral functional-differential-algebraic equations, Appl. math., 40, 457-472, (1995) · Zbl 0853.65077
[59] V.B. Kolmanovskii, A. Myskhis, Applied Theory of Functional Differential Equations, Kluwer Academic, Dordrecht, 1992. ISBN 0-7923-2013-1.
[60] V.B. Kolmanovskii, V.R. Nosov, Stability of Functional Differential Equations, Academic, London, 1986. ISBN 0-12-417941-X.
[61] Koto, T., A stability property of A-stable collocation-based runge – kutta methods for neutral delay differential equations, Bit, 36, 4, 855-859, (1996) · Zbl 0870.65070
[62] Koto, T., The stability of natural runge – kutta methods for nonlinear delay differential equations, Japan J. ind. appl. math., 14, 111-123, (1997) · Zbl 0887.65093
[63] Liu, Y., Numerical solution of implicit neutral functional-differential equations, SIAM J. numer. anal., 36, 516-528, (1999) · Zbl 0920.65045
[64] Luzyanina, T.; Engelborghs, K.; Lust, K.; Roose, D., Computation, continuation and bifurcation analysis of periodic solutions of delay differential equations, Internat. J. bifur. chaos appl. sci. eng., 7, 2547-2560, (1997) · Zbl 0910.34057
[65] T. Luzyanina, D. Roose, Numerical stability analysis and computation of Hopf bifurcation points for delay differential equations, J. Comput. Appl. Math. 72 (1996) 379-392. 6 · Zbl 0855.65092
[66] Meinardus, G.; Nürnberger, G., Approximation theory and numerical methods for delay differential equations, Internat. schriftenreihe numer. math., 74, 13-40, (1985)
[67] Neves, K.W., Automatic integration of functional differential equations: an approach, ACM trans. math. software, 1, 357-368, (1975) · Zbl 0315.65045
[68] Neves, K.W., Algorithm 497 — automatic integration of functional differential equations, ACM trans. math. software, 1, 369-371, (1975) · Zbl 0313.65052
[69] Neves, K.W.; Feldstein, A., Characterization of jump discontinuities for state dependent delay differential equations, J. math. anal. appl., 56, 689-707, (1976) · Zbl 0348.34054
[70] Neves, K.W.; Thompson, S., Software for the numerical solution of systems of functional differential equations with state dependent delays, Appl. numer. math., 9, 385-401, (1992) · Zbl 0751.65045
[71] C.A.H. Paul, A User Guide to , MCCM Technical Report 283, 1995. ISSN 1360-1725.
[72] Qiu, L.; Yang, B.; Kuang, J., The NGP-stability of runge – kutta methods for systems of neutral delay differential equations, Numer. math., 81, 451-459, (1999) · Zbl 0918.65061
[73] Torelli, L., Stability of numerical methods for delay differential equations, J. comput. appl. math., 25, 15-26, (1989) · Zbl 0664.65073
[74] Torelli, L., A sufficient condition for GPN-stability for delay differential equations, Numer. math., 59, 311-320, (1991) · Zbl 0712.65079
[75] Willé, D.R.; Baker, C.T.H., The tracking of derivative discontinuities in systems of delay-differential equations, Appl. num. math., 9, 209-222, (1992) · Zbl 0747.65054
[76] V. Wulf, Numerical analysis of delay differential equations undergoing a Hopf bifurcation Ph.D. Thesis, University of Liverpool, 1999.
[77] M. Zennaro, Delay differential equations: theory and numerics, in: M. Ainsworth, L. Levesley, W.A. Light, M. Marletta (Eds.), Theory and Numerics of Ordinary and Partial Differential Equations, Oxford University Press, Oxford, 1995. ISBN 0-19-851193-0. · Zbl 0847.34072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.