zbMATH — the first resource for mathematics

On Mittag-Leffler-type functions in fractional evolution processes. (English) Zbl 0970.45005
The authors review a variety of fractional evolution processes, a phenomenon governed by an integro-differential equation containing integrals and/or derivatives of fractional order in time whose solutions turn out to be related to Mittag-Leffter-type functions. The equations chosen are the simplest of the fractional calculus and include the Abel integral equations of the second kind, which are relevant in typical inverse problems, and the fractional differential equations, which govern generalized relaxation and oscillation phenomena.

45J05 Integro-ordinary differential equations
26A33 Fractional derivatives and integrals
33E20 Other functions defined by series and integrals
Full Text: DOI
[1] Agarwal, R.P., A propos d’une note de M. pierre Humbert, C.R. acad. sci. Paris, 236, 2031-2032, (1953) · Zbl 0051.30801
[2] Barret, J.H., Differential equations of non-integer order, Canad. J. math., 6, 529-541, (1954) · Zbl 0058.10702
[3] N. Bleistein, R.A. Handelsman, Asymptotic Expansions of Integrals, Dover, New York, 1986, p. 162 (Chapter 4). · Zbl 0327.41027
[4] A. Buhl, Séries Analytiques. Sommabilité Mém. des Sciences Mathématiques, Acad. Sci. Paris, Fasc., Vol. VII, Gauthier-Villars, Paris, 1925 (Chapter 3).
[5] Caputo, M., Linear models of dissipation whose Q is almost frequency independent, part II, Geophys. J. roy. astron. soc., 13, 529-539, (1967)
[6] M. Caputo, Elasticità e Dissipazione, Zanichelli, Bologna, 1969 (in Italian).
[7] Caputo, M.; Mainardi, F., Linear models of dissipation in anelastic solids, Riv. nuovo cimento (ser. II), 1, 161-198, (1971)
[8] K.S. Cole, Electrical conductance of biological systems, in: Proceedings of the Symposium on Quantitative Biology, Cold Spring Harbor, New York, 1933, pp. 107-116.
[9] Craig, J.D.; Brown, J.C., Inverse problems in astronomy, (1986), Adam Hilger Bristol · Zbl 0666.35001
[10] Davis, H.T., The theory of linear operators, (1936), Principia Press Bloomington, IN · JFM 62.0457.02
[11] M.M. Dzherbashian, Integral Transforms and Representations of Functions in the Complex Plane, Nauka, Moscow, 1966 (in Russian).
[12] Dzherbashian, M.M., Harmonic analysis and boundary value problems in the complex domain, (1993), Birkhäuser Basel
[13] A. Erdélyi (Ed.), Higher Transcendental Functions, Bateman Project, Vols. 1-3, McGraw-Hill, New York, pp. 1953-1955.
[14] R. Gorenflo, Abel Integral Equations with special Emphasis on Applications, Lectures in Mathematical Sciences, Vol. 13, The University of Tokyo, Graduate School of Mathematical Sciences, 1996 (ISSN 0919-8180).
[15] R. Gorenflo, The tomato salad problem in spherical stereology, in: P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods and Special Functions, Varna 1996, Inst. Maths & Informatics, Bulg. Acad. Sci., Sofia, 1998, pp. 132-149. Extended version: pre-print A-25/96, Fachbereich Mathematik und Informatik, Freie Universität, Berlin, 1996. [< http://www.math.fu-berlin.de/publ/index.html>]
[16] Gorenflo, R.; Kilbas, A.A.; Rogozin, S., On the generalized Mittag-Leffler type functions, Integral transforms special functions, 7, 215-224, (1998) · Zbl 0935.33012
[17] R. Gorenflo, Y. Luchko, F. Mainardi, Scale-invariant solutions of a signalling problem for the time fractional diffusion-wave equation, J. Comput. Appl. Math. (2000), this issue. · Zbl 0973.35012
[18] R. Gorenflo, Yu. Luchko, S. Rogozin, Mittag-Leffler type functions: notes on growth properties and distribution of zeros, pre-print A-04/97, Fachbereich Mathematik und Informatik, Freie Universität, Berlin, 1997. [<http://www.math.fu-berlin.de/publ/index.html>]
[19] R. Gorenflo, F. Mainardi, Fractional oscillations and Mittag-Leffler functions, pre-print A-14/96, Fachbereich Mathematik und Informatik, Freie Universität, Berlin, 1996. [<http://www.math.fu-berlin.de/publ/index.html>] · Zbl 0916.34011
[20] Gorenflo, R.; Mainardi, F., Fractional calculus: integral and differential equations of fractional order, (), 223-276
[21] Gorenflo, R.; Mainardi, F., Fractional calculus and stable probability distributions, Arch. mech., 50, 377-388, (1998) · Zbl 0934.35008
[22] R. Gorenflo, F. Mainardi, Signalling problem and Dirichlet-Neumann map for time-fractional diffusion-wave equations, in: R. Gorenflo, M.P. Navarro (Eds.), Proceedings International Conference on Inverse Problems and Applications, February 23-27, 1998, University of the Philippines-Diliman, Matimyás Matematika, Vol. 21 (special issue) August 1998, pp. 109-118. · Zbl 0932.35021
[23] R. Gorenflo, F. Mainardi, H.M. Srivastava, Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena, in: D. Bainov (Ed.), Proceedings VIII International Colloquium on Differential Equations, Plovdiv 1997, VSP, Utrecht, 1998, pp. 195-202. · Zbl 0921.33009
[24] Gorenflo, R.; Vessella, S., Abel integral equations: analysis and applications, Lecture notes in mathematics, Vol. 1461, (1991), Springer Berlin
[25] R. Gorenflo, M. Yamamoto, On regularized inversion of Abel integral operators, in: N.H. Anh et al. (Eds.), Analysis and Mechanics of Continuous Media, Publications of the Ho Chi Minh City Mathematical Society, Vol. 3, 1995, pp. 162-182. · Zbl 0852.65132
[26] Gross, B., On creep and relaxation, J. appl. phys., 18, 212-221, (1947)
[27] Hadid, S.B.; Luchko, Yu., An operational method for solving fractional differential equations of an arbitrary order, Panam. math. J., 6, 57-73, (1996) · Zbl 0848.44003
[28] Hille, E.; Tamarkin, J.D., On the theory of linear integral equations, Ann. math., 31, 479-528, (1930) · JFM 56.0337.01
[29] Humbert, P., Quelques résultats relatifs à la fonction de Mittag-Leffler, C.R. acad. sci. Paris, 236, 1467-1468, (1953) · Zbl 0050.10404
[30] Humbert, P.; Agarwal, R.P., Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations, Bull. sci. math (ser. II), 77, 180-185, (1953) · Zbl 0052.06402
[31] Kilbas, A.A.; Saigo, M., On Mittag-Leffler type functions, fractional calculus operators and solution of integral equations, Integral transforms special functions, 4, 355-370, (1996) · Zbl 0876.26007
[32] F. Mainardi, Fractional diffusive waves in viscoelastic solids, in: J.L. Wegner, F.R. Norwood (Eds.), Nonlinear Waves in Solids, ASME book No AMR, Vol. 137, Fairfield NJ, 1995, 93-97.
[33] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. math. lett., 9, 6, 23-28, (1996) · Zbl 0879.35036
[34] Mainardi, F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, solitons fractals, 7, 1461-1477, (1996) · Zbl 1080.26505
[35] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, (), 291-348 · Zbl 0917.73004
[36] F. Mainardi, Applications of fractional calculus in mechanics, in: P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods and Special Functions, Varna 1996, Inst. Maths & Informatics, Bulg. Acad. Sci., Sofia, 1998, pp. 309-334. · Zbl 1113.26303
[37] Mainardi, F.; Gorenflo, R., The Mittag-Leffler function in the riemann – liouville fractional calculus, (), 215-225
[38] F. Mainardi, P. Paradisi, R. Gorenflo, Probability distributions generated by fractional diffusion equations, in: J. Kertesz, I. Kondor (Eds.), Econophysics: an Emerging Science, Kluwer, Dordrecht, 2000, in press. · Zbl 0986.82037
[39] Miller, K.S.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), Wiley New York · Zbl 0789.26002
[40] Mittag-Leffler, G.M., Sur l’intégrale de Laplace-Abel, C.R. acad. sci. Paris (ser. II), 136, 937-939, (1902) · JFM 33.0408.01
[41] Mittag-Leffler, G.M., Une généralisation de l’intégrale de Laplace-Abel, C.R. acad. sci. Paris (ser. II), 137, 537-539, (1903) · JFM 34.0434.02
[42] Mittag-Leffler, G.M., Sur la nouvelle fonction Eα (x), C.R. acad. sci. Paris (ser. II), 137, 554-558, (1903) · JFM 34.0435.01
[43] Mittag-Leffler, G.M., Sopra la funzione Eα (x), R. accad. lincei, rend. (ser. V), 13, 3-5, (1904) · JFM 35.0448.02
[44] Mittag-Leffler, G.M., Sur la représentation analytique d’une branche uniforme d’une fonction monogène, Acta math., 29, 101-181, (1905) · JFM 36.0469.02
[45] Oldham, K.B.; Spanier, J., The fractional calculus, (1974), Academic Press New York · Zbl 0428.26004
[46] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[47] Phragmén, E., Sur une extension d’un théoreme classique de la théorie des fonctions, Acta math., 28, 351-368, (1904) · JFM 35.0404.01
[48] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Amsterdam, 1993 (English translation from the 1987 Russian edition with improvements). · Zbl 0818.26003
[49] G. Sansone, J. Gerretsen, Lectures on the Theory of Functions of a Complex Variable, Vol. I, Holomorphic Functions, Nordhoff, Groningen, 1960, pp. 345-349. · Zbl 0093.26803
[50] Al Saqabi, B.N.; Kim Tuan, Vu, Solution of a fractional differintegral equation, Integral transforms special functions, 4, 321-326, (1996) · Zbl 0864.34002
[51] Srivastava, H.M., On an extension of the Mittag-Leffler function, Yokohama math. J., 16, 77-88, (1968) · Zbl 0175.07001
[52] Wiman, A., Über die nullstellen der funktionen Eα (x), Acta math., 29, 217-234, (1905) · JFM 36.0472.01
[53] G. Witte, Die analytische und die numerische Behandlung einer Klasse von Volterraschen Integralgleichungen im Hilbertraum, Ph.D. Thesis, Free University of Berlin, Logos, Berlin, 1997, ISBN 3-89722-005-9. · Zbl 0887.45013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.