zbMATH — the first resource for mathematics

Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term. (English) Zbl 0970.35151
Summary: We are primarily concerned with the variational problem with long-range interaction. This functional represents the Gibbs free energy of the microphase separation of diblock copolymer melts. The critical points of this variational problem can be regarded as the thermodynamic equilibrium state of the phase separation phenomenon. Experimentally it is well known in the diblock copolymer problem that the final equilibrium state prefers periodic structures such as lamellar, column, spherical, double-diamond geometries and so on. We are interested in the characterization of the periodic structure of the global minimizer of the functional (corresponding to the strong segregation limit). In this paper we completely determine the principal part of the asymptotic expansion of the period with respect to \(\varepsilon\) (interfacial thickness), namely, we estimate the higher-order error term of the period with respect to \(\varepsilon\) in a mathematically rigorous way in one-space dimension.
Moreover, we decide clearly the dependency of the constant of proportion upon the ratio of the length of two homopolymers and upon the quench depth. In the last section, we study the time evolution of the system. We first study the linear stability of spatially homogeneous steady state and derive the most unstable wavelength, if it is unstable. This is related to spinodal decomposition. Then, we numerically investigate the time evolution equation (the gradient flow of the free energy), and see that the free energy has many local minimizers and the systems have some kind of sensitivity with respect to initial data.

35Q72 Other PDE from mechanics (MSC2000)
82D60 Statistical mechanical studies of polymers
74N20 Dynamics of phase boundaries in solids
Full Text: DOI
[1] DOI: 10.1021/ma00164a028 · doi:10.1021/ma00164a028
[2] DOI: 10.1103/PhysRevA.41.6763 · doi:10.1103/PhysRevA.41.6763
[3] DOI: 10.1016/0167-2789(95)00005-O · Zbl 1194.82069 · doi:10.1016/0167-2789(95)00005-O
[4] DOI: 10.1021/ma00173a036 · doi:10.1021/ma00173a036
[5] DOI: 10.1021/ma00241a010 · doi:10.1021/ma00241a010
[6] DOI: 10.1021/ma00221a019 · doi:10.1021/ma00221a019
[7] DOI: 10.1007/BF01191616 · Zbl 0821.49015 · doi:10.1007/BF01191616
[8] DOI: 10.1007/BF00280031 · Zbl 0564.76075 · doi:10.1007/BF00280031
[9] DOI: 10.1016/0022-247X(76)90218-3 · Zbl 0345.34044 · doi:10.1016/0022-247X(76)90218-3
[10] DOI: 10.1137/0511057 · Zbl 0438.34014 · doi:10.1137/0511057
[11] Ito M., Hiroshima Math. J. 14 pp 619– (1985)
[12] DOI: 10.1137/0518124 · Zbl 0638.35010 · doi:10.1137/0518124
[13] DOI: 10.1007/BF03167403 · Zbl 0905.35009 · doi:10.1007/BF03167403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.