## Long-time asymptotics for the coupled Maxwell-Lorentz equations.(English)Zbl 0970.35149

The authors consider the coupled Maxwell-Lorentz equations \begin{aligned} & \text{div } E(x,t)=\rho (x-q(t)),\quad \text{rot } E(x,t)=-\dot B (x,t),\quad \text{div }B(x,t)=0,\\ & \text{rot } B(x,t)=\dot E(x,t)+\rho (x-q(t))\dot q(t),\quad \dot q(t)=(1+p^2(t))^{-1/2}p(t),\\ & \dot p(t)=E_{\text{ex}}(q(t))+\dot q(t)\wedge B_{ex}(q(t))+ \int d^3x\rho (x-q(t))[E(x,t)+\dot q(t)\wedge B(x,t)].\end{aligned} Here $$q(t)\in \mathbb{R}^3$$ denotes the position of charge at time $$t$$, and all derivatives are understood in the sense of distributions. The external potentials satisfy $$\Phi_{\text{ex}},A_{\text{ex}}\in C_{\text{loc}}^{\infty }(\mathbb{R}^3)$$, $$\inf_{q\in\mathbb{R}^3}\Phi_{\text{ex}}(q)>-\infty$$, $$\rho\in C_0^{\infty }(\mathbb{R}^3)$$ ($$\rho$$ is the charge distribution which is smooth and radially symmetric). The Wiener condition also holds, $\hat\rho (k)=\int d^3xe^{ikx}\rho (x)\neq 0\quad (k\in \mathbb{R}^3).$ The main result is the long-time asymptotics of the finite energy solutions to the considered system presented in the Fréchet topology.

### MSC:

 35Q60 PDEs in connection with optics and electromagnetic theory 35B40 Asymptotic behavior of solutions to PDEs
Full Text:

### References:

 [1] Babin A.V., Attractors of Evolutionary Equations (1992) [2] Bambusi D, Ann. Inst. H. Poincaré Phys. Theor 60 pp 339– (1994) [3] Bambusi D, Ann. Inst. H. Poincaré Phys. Theor 60 pp 339– (1994) [4] Bauer G. Dürr D. Global existence for the Maxwell–Lorentz system preparation [5] DOI: 10.1137/0728001 · Zbl 0725.65124 [6] Hörmander L., Microlocal Analysis and Nonlinear Waves 30 pp 51– (1991) [7] Jackson, J.D. 1975. ”Classical Electrodynamics”. New York: Wiley. · Zbl 0997.78500 [8] DOI: 10.1007/BF00253225 · Zbl 0502.35015 [9] Komech A.I., Analysis 33 pp 12– (1998) [10] Komech A.I., Comm. Partial Diff. Equs 22 pp 307– (1997) [11] Lax P.D., Scattering Theory (1967) [12] Lions P.L., III, Math. Kyoto Univ 34 pp 539– (1994) [13] Rohrlich F., Classical Charged Particles.Foundations of Their Theory (1965) · Zbl 0131.43602 [14] Rudin W., Functional Analysis (1977) · Zbl 0925.00003 [15] Segal I., Ann. Sci. Ecole Norm. Sup 1 pp 459– (1968) [16] Scharf G., From Electrostatics to Optics (1994) · Zbl 0807.35140 [17] DOI: 10.1016/0022-1236(68)90004-9 · Zbl 0182.13602 [18] Thirring W., Lehrbuch der Mathematischen Physik, Band 2: Klassische Feldtheorie (1990) · Zbl 0689.53038 [19] Vainberg B.R., Asymptotic Methods in Equations of Mathematical Physics (1989) · Zbl 0743.35001 [20] Vainberg B.R., Partial Differential Equations V in Encyclopaedia of Mathematical Sciences 34 pp 57– (1991) [21] Yaghjian A.D., Relativistic Dynamics of a Charged Sphere (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.