zbMATH — the first resource for mathematics

Quantum cryptography using any two nonorthogonal states. (English) Zbl 0969.94501
Summary: Quantum techniques for key distribution–the classically impossible task of distributing secret information over an insecure channel whose transmissions are subject to inspection by an eavesdropper, between parties who share no secret initially–have been proposed using (a) four nonorthogonally polarized single-photon states or low-intensity light pulses, and (b) polarization-entangled or spacetime-entangled two-photon states. Here we show that in principle any two nonorthogonal quantum states suffice, and describe a practical interferometric realization using low-intensity coherent light pulses.

94A60 Cryptography
Full Text: DOI
[1] M. N. Wegman, J. Comput. Syst. Sci. 22 pp 265– (1981) · Zbl 0461.68074 · doi:10.1016/0022-0000(81)90033-7
[2] C. H. Bennett, in: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (1984)
[3] C. H. Bennett, J. Cryptology 5 pp 3– (1992) · Zbl 1114.94005 · doi:10.1007/BF00191318
[4] A. Einstein, Phys. Rev. 47 pp 777– (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[5] D. Bohm, in: Quantum Theory (1951)
[6] A. Ekert, Phys. Rev. Lett. 67 pp 661– (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[7] J. D. Franson, Phys. Rev. Lett. 62 pp 2205– (1989) · doi:10.1103/PhysRevLett.62.2205
[8] M. A. Horne, Phys. Rev. Lett. 62 pp 2209– (1989) · doi:10.1103/PhysRevLett.62.2209
[9] A.K. Ekert, in: Proceedings of the European Science Foundation Conference, Davos, Switzerland, 1991
[10] C. H. Bennett, Phys. Rev. Lett. 68 pp 557– (1992) · Zbl 0969.94500 · doi:10.1103/PhysRevLett.68.557
[11] R. Ghosh, Phys. Rev. Lett. 59 pp 1903– (1987) · doi:10.1103/PhysRevLett.59.1903
[12] C. H. Bennett, SIAM J. Comput. 17 pp 210– (1988) · Zbl 0644.94010 · doi:10.1137/0217014
[13] U. Maurer, in: Proceedings of the Twenty-Third ACM Symposium on Theory of Computing (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.