×

zbMATH — the first resource for mathematics

An equality test across nonparametric regressions. (English) Zbl 0969.62029
Summary: We propose a procedure for testing the equality of several nonparametric multivariate regressions. We allow the regressors’ designs and the number of observations to differ across subsamples. The division into subsamples is defined through a variable \(C\) which can be either fixed or random. For a random \(C\), our procedure is a general test of significance for qualitative variables in a nonparametric regression. For a fixed \(C\), our procedure provides a ‘nonparametric analysis of covariance’, which is valid for cross-section or panel data. In both cases, the test is a one-sided normal test and is consistent against all alternatives.

MSC:
62G08 Nonparametric regression and quantile regression
62G10 Nonparametric hypothesis testing
62P20 Applications of statistics to economics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aı̈t-Sahalia, Y., Bickel, P., Stoker, T.M., 1994. Goodness-of-fit tests for regression using kernel methods. University of Chicago.
[2] Alvarez, J., Arellano, M., 1998. The time series and cross-section asymptotics of dynamic panel data estimators. CEMFI. · Zbl 1153.62353
[3] Baltagi, B.H.; Hidalgo, J.; Li, Q., A nonparametric test for poolability using panel data, Journal of econometrics, 75, 345-367, (1996) · Zbl 0864.62029
[4] Bierens, H.J., Kernel estimators of regression functions., (), 99-144 · Zbl 0850.62348
[5] Billingsley, P., Convergence of probability measures., (1968), John Wiley & Sons New York · Zbl 0172.21201
[6] Chamberlain, G., 1984. Panel data. In: Griliches, Z., Intriligator, M.D. (Eds.), Handbook of Econometrics. Vol. 2, North-Holland, Amsterdam, pp. 285-330 (Chapter 5). · Zbl 0585.62185
[7] Chow, G.C., Tests of equality between sets of coefficients in two linear regressions, Econometrica, 28, 3, 591-605, (1960) · Zbl 0099.14304
[8] Delgado, M.A., Testing the equality of nonparametric regression curves, Statistics and probability letters, 17, 199-204, (1993) · Zbl 0771.62034
[9] Delgado, M.A., Dominguez, M.A., Lavergne, P., 1998. Asymptotic and bootstrap specification tests of nonlinear in variables econometric models. Universidad Carlos III de Madrid.
[10] Delgado, M.A.; Mora, J., Nonparametric and semiparametric estimation with discrete regressors, Econometrica, 63, 6, 1477-1484, (1995) · Zbl 0837.62035
[11] Fan, J.; Lin, S.-K., Test of significance when data are curves, Journal of the American statistical association, 93, 443, 1007-1021, (1998) · Zbl 1064.62525
[12] Fan, Y.; Li, Q., Consistent model specification tests: omitted variables and semiparametric functional forms, Econometrica, 64, 4, 865-890, (1996) · Zbl 0854.62038
[13] Gozalo, P.L., 1995. Nonparametric specification testing with \(n\)-local power and bootstrap critical values. Brown University.
[14] Guerre, E., Lavergne, P., 1999. Minimax rates for nonparametric specification testing in regression models. LSTA, Université Paris 6. · Zbl 1033.62042
[15] Hall, P., Central limit theorem for integrated square error of multivariate nonparametric density estimators, Journal of multivariate analysis, 14, 1-16, (1984) · Zbl 0528.62028
[16] Hall, P.; Hart, J.D., Bootstrap test for difference between means in nonparametric regression, Journal of the American statistical association, 85, 1039-1049, (1990) · Zbl 0717.62037
[17] Hall, P.; Heyde, C.C., Martingale limit theory and its application., (1980), Academic Press New York · Zbl 0462.60045
[18] Hall, P.; Huber, C.; Speckman, P.L., Covariance-matched one-sided tests for the difference between functional means, Journal of the American statistical association, 92, 439, 1074-1083, (1997) · Zbl 0889.62033
[19] Härdle, W.; Mammen, E., Comparing nonparametric versus parametric regression fits, Annals of statistics, 21, 4, 1926-1947, (1993) · Zbl 0795.62036
[20] Härdle, W.; Marron, J.S., Semiparametric comparison of regression curves, Annals of statistics, 18, 1, 63-89, (1990) · Zbl 0703.62053
[21] Hart, J.D., Nonparametric smoothing and lack-of-fit tests., (1997), Springer New York · Zbl 0886.62043
[22] Hoeffding, W., A class of statistics with asymptotically normal distribution, Annals of mathematical statistics, 15, 293-325, (1948) · Zbl 0032.04101
[23] King, E.C.; Hart, J.D.; Wehrly, T.E., Testing the equality of two regression curves using linear smoothers, Statistics and probability letters, 12, 239-247, (1991)
[24] Koul, H.L.; Schick, A., Testing for the equality of two nonparametric regression curves, Journal of statistical planning and inference, 65, 293-314, (1997) · Zbl 0908.62057
[25] Kulasekera, K.B., Comparison of regression curves using quasi-residuals, Journal of the American statistical association, 90, 431, 1085-1093, (1995) · Zbl 0841.62039
[26] Lavergne, P.; Vuong, Q.H., Nonparametric selection of regressors: the nonnested case, Econometrica, 64, 1, 207-219, (1996) · Zbl 0860.62039
[27] Lavergne, P.; Vuong, Q.H., Nonparametric significance testing., Econometric theory, 16, 576-601, (2000) · Zbl 0968.62047
[28] Li, Q., Consistent model specification tests for time series econometrics models, Journal of econometrics, 92, 1, 101-147, (1999) · Zbl 0929.62054
[29] Mammen, E., When does bootstrap work? asymptotic results and simulations., Lecture notes in statistics, Vol. 77, (1992), Springer New York · Zbl 0760.62038
[30] Munk, A.; Dette, H., Nonparametric comparison of several regression functions: exact and asymptotic theory, Annals of statistics, 26, 6, 2339-2368, (1998) · Zbl 0927.62040
[31] Powell, J.L.; Stock, H.; Stoker, T.M., Semiparametric estimation of index coefficients, Econometrica, 57, 1403-1430, (1989) · Zbl 0683.62070
[32] Quade, D., Nonparametric analysis of covariance, Biometrics, 38, 597-611, (1982) · Zbl 0505.62029
[33] Pinkse, C.A.P.; Robinson, P.M., Pooling nonparametric estimates of regression functions with a similar shape, (), 172-197
[34] Robinson, P., Root-N consistent semiparametric regression, Econometrica, 56, 931-954, (1988) · Zbl 0647.62100
[35] Scheffé, H., The analysis of variance., (1959), Wiley New York · Zbl 0086.34603
[36] Yatchew, A., An elementary nonparametric differencing test of equality of regression functions, Economic letters, 62, 271-278, (1999) · Zbl 0917.90065
[37] Young, S.G.; Bowman, A.W., Non-parametric analysis of covariance, Biometrics, 51, 920-931, (1995) · Zbl 0875.62312
[38] Zheng, J.X., A consistent test of functional form via nonparametric estimation techniques, Journal of econometrics, 75, 2, 263-289, (1996) · Zbl 0865.62030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.