×

zbMATH — the first resource for mathematics

On quantum cohomology rings of partial flag varieties. (English) Zbl 0969.14039
In this article a unified description of the structure of the small cohomology rings for all projective homogeneous spaces \(SL_n(\mathbb C)/P\) (with \(P\) a parabolic subgroup) is given. First the results on the classical cohomology rings are recalled. Then the algebraic structure of the quantum cohomology ring is studied. Important results are the general quantum versions of the Giambelli and Pieri formulas of the classical cohomology (classical Schubert calculus). They are obtained via geometric computations of certain Gromov-Witten invariants, which are realized as intersection numbers on hyperquot schemes.

MSC:
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14M15 Grassmannians, Schubert varieties, flag manifolds
14N15 Classical problems, Schubert calculus
14M17 Homogeneous spaces and generalizations
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Alexander Astashkevich and Vladimir Sadov, Quantum cohomology of partial flag manifolds \(F_ n_ 1\cdots n_ k\) , Comm. Math. Phys. 170 (1995), no. 3, 503-528. · Zbl 0865.14027
[2] K. Behrend, Gromov-Witten invariants in algebraic geometry , Invent. Math. 127 (1997), no. 3, 601-617. · Zbl 0909.14007
[3] K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants , Duke Math. J. 85 (1996), no. 1, 1-60. · Zbl 0872.14019
[4] I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Schubert cells and cohomology of the spaces \(G/P\) , Russian Math. Surveys 28 (1973), 1-26. · Zbl 0289.57024
[5] Aaron Bertram, Quantum Schubert calculus , Adv. Math. 128 (1997), no. 2, 289-305. · Zbl 0945.14031
[6] Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts , Ann. of Math. (2) 57 (1953), 115-207. JSTOR: · Zbl 0052.40001
[7] Ionuţ Ciocan-Fontanine, Quantum cohomology of flag varieties , Internat. Math. Res. Notices (1995), no. 6, 263-277. · Zbl 0847.14011
[8] I. Ciocan-Fontanine, The quantum cohomology ring of flag varieties , to appear in Trans. Amer. Math. Soc. JSTOR: · Zbl 0920.14027
[9] I. Ciocan-Fontanine and W. Fulton, Quantum double Schubert polynomials , Schubert Varieties and Degeneracy Loci, Lecture Notes in Math., vol. 1689, Springer-Verlag, New York, 1988, pp. 134-137.
[10] Michel Demazure, Désingularisation des variétés de Schubert généralisées , Ann. Sci. École Norm. Sup. (4) 7 (1974), 53-88. · Zbl 0312.14009
[11] C. Ehresmann, Sur la topologie de certains espaces homogènes , Ann. of Math. (2) 35 (1934), 396-443. JSTOR: · Zbl 0009.32903
[12] Sergey Fomin, Sergei Gelfand, and Alexander Postnikov, Quantum Schubert polynomials , J. Amer. Math. Soc. 10 (1997), no. 3, 565-596. JSTOR: · Zbl 0912.14018
[13] William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , Duke Math. J. 65 (1992), no. 3, 381-420. · Zbl 0788.14044
[14] William Fulton, Intersection theory , Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998, 2d ed. · Zbl 0885.14002
[15] William Fulton, Universal Schubert polynomials , Duke Math. J. 96 (1999), no. 3, 575-594. · Zbl 0981.14022
[16] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology , Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45-96. · Zbl 0898.14018
[17] Alexander Givental and Bumsig Kim, Quantum cohomology of flag manifolds and Toda lattices , Comm. Math. Phys. 168 (1995), no. 3, 609-641. · Zbl 0828.55004
[18] Bumsig Kim, Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings , Internat. Math. Res. Notices (1995), no. 1, 1-15 (electronic). · Zbl 0849.14019
[19] Bumsig Kim, On equivariant quantum cohomology , Internat. Math. Res. Notices (1996), no. 17, 841-851. · Zbl 0881.55007
[20] B. Kim, Gromov-Witten invariants for flag manifolds , thesis, University of California, Berkeley, 1996.
[21] A. N. Kirillov and T. Maeno, Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa-Intriligator formula , to appear in Discrete Math. · Zbl 0958.05137
[22] Steven L. Kleiman, The transversality of a general translate , Compositio Math. 28 (1974), 287-297. · Zbl 0288.14014
[23] Maxim Kontsevich, Enumeration of rational curves via torus actions , The moduli space of curves (Texel Island, 1994), Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335-368. · Zbl 0885.14028
[24] M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry , Comm. Math. Phys. 164 (1994), no. 3, 525-562. · Zbl 0853.14020
[25] Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert , C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447-450. · Zbl 0495.14031
[26] Gérard Laumon, Un analogue global du cône nilpotent , Duke Math. J. 57 (1988), no. 2, 647-671. · Zbl 0688.14023
[27] Jun Li and Gang Tian, The quantum cohomology of homogeneous varieties , J. Algebraic Geom. 6 (1997), no. 2, 269-305. · Zbl 0909.14012
[28] Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties , J. Amer. Math. Soc. 11 (1998), no. 1, 119-174. JSTOR: · Zbl 0912.14004
[29] I. G. Macdonald, Notes on Schubert Polynomials , LaCIM, Départment de Mathématiques et d’Informatique, Université du Québec à Montréal, 1991.
[30] Dusa McDuff and Dietmar Salamon, \(J\)-holomorphic curves and quantum cohomology , University Lecture Series, vol. 6, American Mathematical Society, Providence, RI, 1994. · Zbl 0809.53002
[31] D. Petersen, lecture , 1996, University of Washington, May.
[32] A. Postnikov, On a quantum version of Pieri’s formula , to appear in Progress in Geometry, Birkhäuser, Boston. · Zbl 0944.14019
[33] Yongbin Ruan and Gang Tian, A mathematical theory of quantum cohomology , J. Differential Geom. 42 (1995), no. 2, 259-367. · Zbl 0860.58005
[34] Bernd Siebert and Gang Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator , Asian J. Math. 1 (1997), no. 4, 679-695. · Zbl 0974.14040
[35] Frank Sottile, Pieri’s formula for flag manifolds and Schubert polynomials , Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 89-110. · Zbl 0837.14041
[36] Gang Tian, Quantum cohomology and its associativity , Current developments in mathematics, 1995 (Cambridge, MA), Internat. Press, Cambridge, MA, 1994, pp. 361-401. · Zbl 0877.58060
[37] Cumrun Vafa, Topological mirrors and quantum rings , Essays on mirror manifolds ed. S. T. Yau, Internat. Press, Hong Kong, 1992, pp. 96-119. · Zbl 0827.58073
[38] S. Veigneau, Calcul symbolique et calcul distribué en combinatoire algébrique , thesis, Université Marne-la-Vallée, 1996.
[39] Edward Witten, Two-dimensional gravity and intersection theory on moduli space , Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, pp. 243-310. · Zbl 0757.53049
[40] Edward Witten, The Verlinde algebra and the cohomology of the Grassmannian , Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Internat. Press, Cambridge, MA, 1995, pp. 357-422. · Zbl 0863.53054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.