zbMATH — the first resource for mathematics

A simple framework for nonparametric specification testing. (English) Zbl 0968.62046
Summary: This paper presents a simple framework for testing the specification of parametric conditional means. The test statistics are based on quadratic forms in the residuals of the null model. Under general assumptions the test statistics are asymptotically normal under the null. With an appropriate choice of the weight matrix, the tests are shown to be consistent and to have good local power. Specific implementations involving matrices of bin and kernel weights are discussed. Finite sample properties are explored in simulations.

62G10 Nonparametric hypothesis testing
62P20 Applications of statistics to economics
Full Text: DOI
[1] Azzalini, A.; Bowman, A.; Härdle, W.: On the use of nonparametric regression for model checking. Biometrika 76, 1-11 (1989) · Zbl 0663.62096
[2] Bierens, H.: Consistent model specification tests. Journal of econometrics 20, 105-134 (1982) · Zbl 0549.62076
[3] Bierens, H.: Model specification testing for time series regression. Journal of econometrics 26, 323-353 (1984) · Zbl 0563.62064
[4] Bierens, H.: A consistent conditional moment test of functional form. Econometrica 58, 1443-1458 (1990) · Zbl 0737.62058
[5] Bierens, H.; Ploberger, W.: Asymptotic theory of integrated conditional moment tests. Econometrica 65, 1129-1151 (1997) · Zbl 0927.62085
[6] Chevalier, J.; Ellison, G.: Risk-taking by mutual funds as a response to incentives. Journal of political economy 105, 1167-1200 (1997)
[7] Davidson, R. J.; Mackinnon, J.: Several tests for model specification in the presence of alternative hypotheses. Econometrica 49, 781-793 (1981) · Zbl 0472.62108
[8] Delgado, M. A.; Stengos, T.: Semiparametric testing of non-nested models. Review of economic studies 61, 291-303 (1994) · Zbl 0805.62097
[9] Dejong, P.; Bierens, H. J.: On the limiting behavior of a chi-square type test if the number of conditional moments tested approaches infinity. Econometric theory 10, 53-90 (1994)
[10] Duncan, A., Jones, A., 1994. On the specification of labour supply models: A nonparametric evaluation. Discussion Paper No. 94/6, University of York.
[11] Ellison, G., Ellison, S.F., 1998. A simple framework for nonparametric specification testing. NBER Technical Working Paper 234. · Zbl 0209.34305
[12] Eubank, R.; Spiegelman, C.: Testing the goodness of fit of a linear model via nonparametric regression techniques. Journal of the American statistical association 85, 387-392 (1990) · Zbl 0702.62037
[13] Fan, Y.; Li, Q.: Consistent model misspecification tests: omitted variables and semiparametric functional forms. Econometrica 64, 865-890 (1996) · Zbl 0854.62038
[14] Gozalo, P.: A consistent model specification test for nonparametric estimation of regression function models. Econometric theory 9, 451-477 (1993)
[15] Härdle, W., 1990. Applied Nonparametric Regression. Cambridge University Press, Cambridge. · Zbl 0714.62030
[16] Härdle, W.; Mammen, E.: Comparing nonparametric versus parametric regression fits. Annals of statistics 21, 1926-1947 (1993) · Zbl 0795.62036
[17] Hausman, J.: Specification tests in econometrics. Econometrica 46, 1251-1271 (1978) · Zbl 0397.62043
[18] Hidalgo, J., 1992. A nonparametric test for nested and non-nested models. Mimeo, London School of Economics.
[19] Hong, Y.; White, H.: Consistent specification testing via nonparametric series regression. Econometrica 63, 1133-1159 (1995) · Zbl 0941.62125
[20] Horowitz, J.; Härdle, W.: Testing a parametric model against a semiparametric alternative. Econometric theory 10, 821-848 (1994)
[21] Jayasuriya, B.: Testing for polynomial regression using nonparametric regression techniques. Journal of the American statistical association 96, 1626-1631 (1996) · Zbl 0881.62045
[22] Loftsgaarden, D.; Quesenberry, G.: A nonparametric estimate of a multivariate density function. Annals of mathematical statistics 36, 1049-1051 (1965) · Zbl 0132.38905
[23] Mikosch, T.: Functional limit theorems for random quadratic forms. Stochastic processes and their applications 37, 81-98 (1991) · Zbl 0726.60030
[24] Newey, W.: Maximum likelihood specification testing and conditional moment tests. Econometrica 53, 1047-1070 (1985) · Zbl 0629.62107
[25] Ramsey, J. B.: Tests for specification errors in classical least squares regression analysis. Journal of the royal statistical society, series B 31, 350-371 (1969) · Zbl 0179.48902
[26] Rodriguez, D., Stoker, T., 1993. Regression test of semiparametric index model specification. Working paper 9200-6, Center for Energy and Environmental Policy.
[27] Tauchen, G.: Diagnostic testing and evaluation of maximum likelihood models. Journal of econometrics 30, 415-443 (1985) · Zbl 0591.62094
[28] Taylor, R.L., 1978. Stochastic Convergence of Weighted Sums of Random Elements in Linear Spaces, Springer, Berlin. · Zbl 0443.60004
[29] Tukey, J.W., 1961. Curves as parameters and touch estimation. Proceedings of the Fourth Berkeley Symposium, pp. 681–694. · Zbl 0105.12304
[30] White, H., 1987. Specification testing in dynamic models. Advances in Econometrics Fifth World Congress, vol. I. Cambridge University Press, Cambridge, pp. 1–58. · Zbl 0850.62886
[31] White, H., Hong, Y., 1993. M testing using finite and infinite dimensional parametric estimators. University of California at San Diego, Department of Economics Working paper 93-01.
[32] Wooldridge, J.: A test for functional form against nonparametric alternatives. Econometric theory 8, 452-475 (1992)
[33] Yatchew, A.: Nonparametric regression tests based on an infinite dimensional least squares procedure. Econometric theory 8, 435-451 (1992)
[34] Zheng, J.: A consistent test of functional form via nonparametric estimation techniques. Journal of econometrics 75, 263-289 (1996) · Zbl 0865.62030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.