×

zbMATH — the first resource for mathematics

Nonlinear RDT theory of near-wall turbulence. (English) Zbl 0965.76032
The authors consider the three-dimensional velocity field with fluctuations. The Gabor transform allows to obtain expressions for average Reynolds stresses and turbulent shear stress. The authors investigate mean flow profile and evaluate the model constants. The energy spectrum tensor is obtained. The results suggest that the spatial uniformity and fast decay of the second correlator should be examined using DNS data.

MSC:
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nazarenko, S.V.; Kevlahan, N.; Dubrulle, B., J. fluid mech., 390, 325, (1999)
[2] Th. von Karman, Mechanische Aehnlichkeit und Turbulenz, Nach. Ges. Wiss. Goettingen Math-Phys. Klasse, 1932, pp. 58-76.
[3] L. Prandtl, Zur turbulenten Stroemung in Rohren und laengs Platten, Ergeb. Aerodyn. Versuch., Series 4, Goettingen, 1932.
[4] Barenblatt, G.I., J. fluid mech., 248, 513, (1993)
[5] Barenblatt, G.I.; Chorin, A.J., Proc. nat. acad. sci. USA, 93, 6749, (1996)
[6] Barenblatt, G.I.; Chorin, A.J.; Prostokishin, V.M., Proc. nat. acad. sci. USA, 94, 773, (1997)
[7] Zagarola, M.V.; Smits, A.J., Phys. rev. lett., 78, 239, (1997)
[8] Zagarola, M.V.; Perry, A.E.; Smits, A.J., Phys. fluids, 9, 2094, (1997)
[9] Oberlack, M., J. fluid mech., 379, 1, (1999)
[10] W. George, L. Castillo, M. Wosnik, TAM Report No. 872, UILU-ENG-97-6033, University of Illinois at Urbana-Champain, IL, November 1997.
[11] Kim, J.; Moser, R., J. fluid mech., 177, 133, (1987)
[12] R. Moser, Phys. Fluids, April (1999) 943.
[13] H.K. Moffatt, The interaction of turbulence with a strong wind shear, in: A.M. Yaglom, V.I. Tatarsky (Eds.), Proceedings of the URSI-IUGG International Colloquim on Atmospheric Turbulence and Radio Wave Propagation held in Moscow, June 1965, Nauka, Moscow, 1967.
[14] Batchelor, G.K.; Proudman, I., Q. J. mech. appl. math., 7, 83, (1954)
[15] Hunt, J.C.R., J. fluid mech., 61, 625, (1973)
[16] Lifschitz, A.; Hameiri, E., Phys. fluids A, 3, 2644, (1991)
[17] J. Nikuradze, Forsch. Arb. Ing-Wes No. 356, 1932 (English translation NACA TT F-10, p. 359).
[18] Dyachenko, A.I.; Nazarenko, S.V.; Zakharov, V.E., Phys. lett. A, 165, 330, (1992)
[19] Dubrulle, B.; Nazarenko, S., Physica D, 110, 123, (1997)
[20] Manin, D.Yu.; Nazarenko, S.V., Phys. fluids A, 6, 1158, (1994)
[21] Landahl, M.T., Physica D, 37, 11, (1989)
[22] B. Dubrulle, J.-P. Laval, S. Nazarenko, N.K.-R. Kevlahan, Derivation of equilibrium profiles in plane parallel flows using a dynamic subgrid-scale model, submitted to Phys. Fluids. · Zbl 1184.76145
[23] S. Nazarenko, Phys. Lett. A 264 (2000) 444.
[24] I.S. Gradshtein, I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1965.
[25] Perry, A.E.; Henbest, S.; Chong, M.S., J. fluid mech., 165, 163, (1986)
[26] Kevlahan, N.K.-R.; Hunt, J.C.R., J. fluid mech., 337, 333, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.