×

zbMATH — the first resource for mathematics

On the stationary Cahn-Hilliard equation: Interior spike solutions. (English) Zbl 0965.35070
Summary: We study solutions of the stationary Cahn-Hilliard equation in a bounded smooth domain which have a spike in the interior. We show that a large class of interior points (the “nondegenerate peak” points) have the following property: There exist such solutions whose spike lies close to a given nondegenerate peak point. Our constrution uses among others the methods of viscosity solution, weak convergence of measures, and Lyapunov-Schmidt reduction.

MSC:
35J65 Nonlinear boundary value problems for linear elliptic equations
35B25 Singular perturbations in context of PDEs
35J60 Nonlinear elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, S., Lectures on elliptic boundary value problems, (1965), Van Nostrand Princeton · Zbl 0151.20203
[2] Alikakos, N.; Bates, P.W.; Chen, X., Convergence of the cahn – hilliard equation to the Hele-Shaw model, Arch. rational mech. anal., 128, 165-205, (1994) · Zbl 0828.35105
[3] Alikakos, N.; Bates, P.W.; Fusco, G., Slow motion for cahn – hilliard equation in one space dimension, J. differential equations, 90, 81-134, (1991) · Zbl 0753.35042
[4] N. Alikakos, G. Fusco, M. Kowalczyk, Finite dimensional dynamics and interfaces intersecting the boundary I
[5] Bates, P.; Fife, P., The dynamics of nucleation for the cahn – hilliard equation, SIAM J. appl. math., 53, 990-1008, (1993) · Zbl 0788.35061
[6] Caffarelli, L.A.; Córdoba, A., Uniform convergence of a singular perturbation problem, Comm. pure appl. math., 48, 1-12, (1995) · Zbl 0829.49013
[7] Cahn, J.W.; Hilliard, J.E., Free energy of a nonuniform system, I. interfacial free energy, J. chem. phys., 28, 258-267, (1958)
[8] Chen, X., Generation and propagation of interfaces in reaction diffusion systems, J. differential equations, 96, 116-141, (1992) · Zbl 0765.35024
[9] Chen, X.; Kowalczyk, M., Existence of equilibria for the cahn – hilliard equation via local minimizers of the perimeter, Comm. partial differential equations, 21, 1207-1233, (1996) · Zbl 0863.35009
[10] E. N. Dancer, A note on asymptotic uniqueness for some nonlinearities which change sign, Rocky Mountain Math. J.
[11] Fleming, W.H.; Souganidis, P.E., Asymptotic series and the method of vanishing viscosity, Indiana univ. math. J., 35, 425-447, (1986) · Zbl 0573.35034
[12] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. funct. anal., 69, 397-408, (1986) · Zbl 0613.35076
[13] Gidas, B.; Ni, W.-M.; Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations inR^{n}, Mathematical analysis and applications, Adv. math. suppl. studies, 7A, (1981), Academic Press New York, p. 369-402
[14] Grinfeld, M.; Novick-Cohen, A., Counting stationary solutions of the cahn – hilliard equation by transversality arguments, Proc. roy. soc. Edinburgh sect. A, 125, 351-370, (1995) · Zbl 0828.34007
[15] M. Grinfeld, A. Novick-Cohen, The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor · Zbl 0927.35045
[16] C. Gui, J. Wei, Multiple interior spike solutions for some singularly perturbed Neumann problems, 1997
[17] Helffer, B.; Sjöstrand, J., Multiple wells in the semi-classical limit I, Comm. partial differential equations, 9, 337-408, (1984) · Zbl 0546.35053
[18] Kohn, R.V.; Sternberg, P., Local minimizers and singular perturbations, Proc. roy. soc. Edinburgh sect. A, 111, 69-84, (1989) · Zbl 0676.49011
[19] M. Kowalczyk, Multiple spike layers in the shadow Gierer-Meinhardt system: Existence of equilibria and approximate invariant manifold · Zbl 0962.35063
[20] Lions, J.L.; Magenes, E., Non-homogeneous boundary value problems and applications, (1972), Springer-Verlag Berlin/New York · Zbl 0223.35039
[21] Lions, P.L., Generalized solutions of hamilton – jacobi equations, Pitman res. notes math. series, (1982), Pitman London
[22] Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch. rational mech. anal., 107, 71-83, (1989)
[23] Ni, W.-M.; Takagi, I., On the shape of least energy solution to a semilinear Neumann problem, Comm. pure appl. math., 41, 819-851, (1991) · Zbl 0754.35042
[24] Ni, W.-M.; Takagi, I., Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke math. J., 70, 247-281, (1993) · Zbl 0796.35056
[25] Ni, W.-M.; Wei, J., On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. pure appl. math., 48, 731-768, (1995) · Zbl 0838.35009
[26] Oh, Y.G., Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (Va, Comm. partial differential equations, 13, 1499-1519, (1988) · Zbl 0702.35228
[27] Oh, Y.G., On positive multi-bump bound states of nonlinear Schrödinger equations under multiple-well potentials, Comm. math. phys., 131, 223-253, (1990) · Zbl 0753.35097
[28] Pego, R.L., Front migration in the nonlinear cahn – hilliard equation, Proc. roy. soc. London A, 422, 261-278, (1989) · Zbl 0701.35159
[29] Peletier, L.A.; Serrin, J., Uniqueness of positive solutions of semilinear equations inR^{n}, Arch. rational mech. anal., 81, 181-197, (1983) · Zbl 0516.35031
[30] Ward, M.J., An asymptotic analysis of localized solutions for some reaction-diffusion models in multi-dimensional domains, Studies in appl. math., 97, 103-126, (1996) · Zbl 0932.35059
[31] Ward, M.J., Metastable bubble solutions for the allen – cahn equation with mass conservation, SIAM J. appl. math., 56, 1247-1279, (1996) · Zbl 0870.35011
[32] Wei, J., On the interior spike layer solutions to a singularly perturbed semilinear Neumann problem, Tohoku math. J., 50, (1998)
[33] J. Wei, On the effect of domain geometry in some singular perturbation problems, Diff. Int. Eqns. · Zbl 0939.35018
[34] Wei, J., On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. differential equations, 134, 104-133, (1997) · Zbl 0873.35007
[35] J. Wei, M. Winter, Stationary solutions of the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire · Zbl 0910.35049
[36] J. Wei, M. Winter, Multi-peak solutions for a wide class of singular perturbation problems, J. London Math. Soc. · Zbl 0922.35025
[37] J. Wei, M. Winter, Multiple-interior-spike solutions for the Cahn-Hilliard equation with arbitrarily many spikes, 1997
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.