zbMATH — the first resource for mathematics

Effective properties of composite materials with periodic microstructure: A computational approach. (English) Zbl 0964.74054
After a review of the state of knowledge about composites with periodic microstructure, the authors discuss two different numerical methods. For the first one, which is based on the finite element method (FEM), they use the periodicity conditions and the concept of averaged strain or stress, respectively, for linearly elastic, elastoplastic and power-law materials. In the second one, the authors expoit fast Fourier transform method (FFTM) and the concept of homogeneous reference material. At last, three test examples and three advanced ones are analyzed numerically using FEM and FFTM. In the linearly elastic case for a moderate contrast between the phases, the FFTM is must faster than FEM; in the strongly nonlinear case and for a very large contrast between the phases, the FFTM, however, does not converge.

74Q15 Effective constitutive equations in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74S25 Spectral and related methods applied to problems in solid mechanics
Full Text: DOI
[1] Hashin, Z.; Shtrikman, S., On some variational principles in anisotropic and nonhomogeneous elasticity, J. mech. phys. solids, 10, 335-342, (1962) · Zbl 0111.41401
[2] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. mech. phys. solids, 11, 357-372, (1963) · Zbl 0114.15804
[3] Willis, J.R., The structure of overall constitutive relations for a class of nonlinear composites, IMA J. appl. math., 43, 231-242, (1989) · Zbl 0695.73005
[4] Ponte Castañeda, P., The effective mechanical properties of nonlinear isotropic composites, J. mech. phys. solids, 39, 45-71, (1991) · Zbl 0734.73052
[5] Suquet, P., Overall potentials and extremal surfaces of power law or ideally plastic materials, J. mech. phys. solids, 41, 981-1002, (1993) · Zbl 0773.73063
[6] Teply, J.L.; Dvorak, G., Bounds on overall instantaneous properties of elastic-plastic composites, J. mech. phys. solids, 36, 29-58, (1988) · Zbl 0632.73052
[7] Adams, D.F.; Doner, D.R., Transverse normal loading of a unidirectional composite, J. comput. mat., 1, 152, (1967)
[8] Needleman, A., Void growth in an elastic plastic medium, J. appl. mech., 39, 964-970, (1972)
[9] Brockenborough, J.R.; Suresh, S.; Wienecke, H.A., Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape, Acta metall. mater., 39, 735-752, (1991)
[10] Moulinec, H.; Suquet, P., A FFT-based numerical method for computing the mechanical properties of composites from images of their microstructure, (), 235-246
[11] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. methods appl. mech. engrg., 157, 69-94, (1997) · Zbl 0954.74079
[12] Sanchez-Palencia, E., Comportement local et macroscopique d’un type de milieux physiques hétérogènes, Int. J. engrg. sci., 12, 331-351, (1974) · Zbl 0275.76032
[13] Sanchez-Palencia, E., Nonhomogeneous media and vibration theory, () · Zbl 0542.73006
[14] Tartar, L., Estimations fines de coefficients homogénéisés, (), 364-373 · Zbl 0586.35004
[15] Bensoussan, A.; Lions, J.L.; Papanicolaou, G., Asymptotic analysis for periodic structures, (1978), North-Holland Berlin · Zbl 0411.60078
[16] Suquet, P., Analyse limite et homogénéisation, C.R. acad. sci. Paris, II, 296, 1355-1358, (1983) · Zbl 0529.73036
[17] Bouchitte, G.; Suquet, P., Homogenization, plasticity and yield design, (), 107-133 · Zbl 0746.73002
[18] Tartar, L., Compensated compactness and applications to p.d.e, (), 136-212
[19] Bourgat, J.F., Numerical experiments of the homogenization method for operators with periodic coefficients, (), 330-356 · Zbl 0405.65062
[20] Marigo, J.J.; Mialon, P.; Michel, J.C.; Suquet, P., Plasticité et homogénéisation: un exemple de prévision des charges limites d’une structure périodiquement hétérogène, J. Méca. th. appl., 6, 47-75, (1987) · Zbl 0602.73029
[21] Devries, F.; Dumontet, H.; Duvaut, G.; Léné, F., Homogenization and damage for composite structures, Int. J. numer. methods engrg., 27, 285-298, (1989) · Zbl 0709.73059
[22] Bendsoe, M.P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. methods appl. mech. engrg., 71, 197-224, (1988) · Zbl 0671.73065
[23] Guedes, J.M.; Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptative finite element methods, Comput. methods appl. mech. engrg., 83, 143-198, (1990) · Zbl 0737.73008
[24] Moulinec, H.; Suquet, P., A fast numerical method for computing the linear and nonlinear properties of composites, C.R. acad. sci. Paris II, 318, 1417-1423, (1994) · Zbl 0799.73077
[25] Anthoine, A., Derivation of the in-plane elastic characteristics of masonry through homogenization theory, Int. J. solids struct., 32, 137-163, (1995) · Zbl 0868.73010
[26] Suquet, P., Elements of homogenization for inelastic solid mechanics, (), 193-278
[27] Mura, T., Micromechanics of defects in solids, (1987), Martinus Nijhoff Publishers
[28] Ponte Castañeda, P., Nonlinear composite materials: effective constitutive behavior and microstructure evolution, (), 131-195 · Zbl 0883.73050
[29] Hill, R., The essential structure of constitutive laws for metal composites and polycrystals, J. mech. phys. solids, 15, 79-95, (1967)
[30] de Buhan, P.; Taliercio, A., A homogenization approach to the yield strength of composites, European J. mech. A/solids, 10, 129-154, (1991) · Zbl 0758.73003
[31] Taliercio, A.; Sagramoso, P., Uniaxial strength of polymeric-matrix fibrous composites predicted through a homogenization approach, Int. J. solids struct., 32, 2095-2123, (1995) · Zbl 0919.73051
[32] Francescato, P.; Pastor, J., Lower and upper numerical bounds to the off-axis strength of unidirectional fiber-reinforced composites by limit analysis methods, Eur. J. mech., A solids, 16, 213-234, (1997)
[33] de Buhan, P.; Maghous, S., A straightforward numerical method for evaluating the ultimate loads of structures, Eur. J. mech. A/solids, 14, 309-328, (1995) · Zbl 0856.73076
[34] Swan, C.C., Techniques for stress-and strain-controlled homogenization of inelastic periodic composites, Comput. methods appl. mech. engrg., 117, 249-267, (1994) · Zbl 0846.73039
[35] Debordes, O.; Licht, C.; Marigo, J.J.; Mialon, P.; Michel, J.C.; Suquet, P., Calcul des charges limites de structures fortement hétérogènes, (), 56-70
[36] Licht, C., Frottement, viscoplasticité et homogénéisation, ()
[37] Simo, J.C.; Taylor, R.L., A return mapping algorithm for plane stress elastoplasticity, Int. J. numer. methods engrg., 24, 649-670, (1986) · Zbl 0585.73059
[38] Crisfield, M.A., Non-linear finite element analysis of solids and structures, (1991), Wiley · Zbl 0809.73005
[39] Batoz, J.L.; Dhatt, G., Incremental displacement algorithms for nonlinear problems, Int. J. numer. methods engrg., 14, 1262-1267, (1979) · Zbl 0423.73061
[40] Clarke, M.J.; Hancock, G.J., A study of incremental-iterative strategies for nonlinear analyses, Int. J. numer. methods engrg., 29, 1365-1391, (1990)
[41] Müller, W.H., Mathematical versus experimental stress analysis of inhomogeneities in solids, J. physique IV, 6, C1.139-C1.148, (1996)
[42] Jansson, S., Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure, Int. J. solids struct., 29, 2181-2200, (1992) · Zbl 0825.73426
[43] Miller, M.N., Bounds for effective bulk modulus of heterogeneous materials, J. math. phys., 10, 2005-2013, (1969)
[44] Suquet, P.; Moulinec, H., Numerical simulation of the effective properties of a class of cell materials, (), 277-287
[45] Hill, R., Continuum micro-mechanics of elastoplastic polycrystals, J. mech. phys. solids, 13, 89-101, (1965) · Zbl 0127.15302
[46] Helsing, J.; Milton, G.W.; Movchan, A.B.; relations, Duality, Correspondences and numerical results for planar elastic composites, J. mech. phys. solids, 45, 565-590, (1997) · Zbl 0969.74567
[47] Castañeda, P. Ponte, New variational principles in plasticity and their application to composite materials, J. mech. phys. solids, 40, 1757-1788, (1992) · Zbl 0764.73103
[48] Castañeda, P. Ponte; Suquet, P., Nonlinear composites, (), 171-302 · Zbl 0889.73049
[49] Siegmund, T.; Werner, E.; Fischer, F.D., Structure-property relations in duplex materials, Comput. mater. sci., 1, 234-240, (1993)
[50] Michel, J.C., A self-consistent estimate of the potential of a composite made of two power-law phases with the same exponent, C.R. acad. sci. Paris II, 322, 447-454, (1996) · Zbl 0917.73048
[51] Castaneda, P. Ponte; Suquet, P., On the effective mechanical behavior of weakly inhomogeneous nonlinear materials, Eur. J. mech. A/solids, 14, 205-236, (1995) · Zbl 0835.73040
[52] Gusev, A.A., Representative volume element size for elastic composites: a numerical study, J. mech. phys. solids, 45, 1449-1459, (1997) · Zbl 0977.74512
[53] Christman, T.; Needleman, A.; Suresh, S., An experimental and numerical study of deformation in metal-ceramic composites, Acta metall. mater., 37, 3029-3050, (1989)
[54] Bao, G.; Hutchinson, J.W.; McMeeking, R.M., Particle reinforcement of ductile matrices against plastic flow and creep, Acta metall. mater., 39, 1871-1882, (1991)
[55] Tvergaard, V., Analysis of tensile properties for a whisker-reinforced metal-matrix composite, Acta metall. mater., 38, 185-194, (1990)
[56] Hom, C.L., Three-dimensional finite element analysis of plastic deformation in a whisker-reinforced metal matrix composite, J. mech. phys. solids, 40, 991-1008, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.