zbMATH — the first resource for mathematics

A novel lattice BGK approach for low Mach number combustion. (English) Zbl 0963.76072
Summary: We present an extended lattice Boltzmann BGK model for simulation of low Mach number flows with significant density changes. For applications to reactive flows, this new model is coupled with a finite difference scheme for solving transport equations for energy and species. With a boundary fitting formulation and local grid refinement, the scheme enables accurate computations of low Mach number reactive flows in complex geometry on the simplest Cartesian grid. Examples of reactive flows around porous burners are presented.

76M28 Particle methods and lattice-gas methods
76M20 Finite difference methods applied to problems in fluid mechanics
76V05 Reaction effects in flows
80A25 Combustion
Full Text: DOI
[1] Chu, B.T.; Kovasznay, L.S.G., Non-linear interactions in a viscous heat-conducting compressible gas, J. fluid. mech., 3, 494, (1958)
[2] Sivashinsky, G.J., Hydrodynamics theory of flame propagation in an enclosed volume, Acta astronaut., 6, 631, (1979) · Zbl 0397.76062
[3] Rehm, G.R.; Baum, H.R., The equations of motion for thermally driven flows, J. res. natl. bur. standards, 83, 297, (1978) · Zbl 0433.76072
[4] McMurtry, P.A.; Jou, W.H.; Riley, J.J.; Metcalfe, R.W., Direct numerical simulations of a reacting mixing layer with chemical heat release, Aiaa j., 24, (1986)
[5] Chorin, A.J., Numerical solution of the navier – stokes equations, Math. comput., 23, 341, (1968) · Zbl 0184.20103
[6] McNamara, G.; Zanetti, G., Use of the Boltzmann equation to simulate lattice-gas automata, Phys. rev. lett., 61, 2332, (1988)
[7] Higuera, F.; Succi, S.; Benzi, R., Lattice gas dynamics with enhanced collisions, Europhys. lett., 9, 345, (1989)
[8] Qian, Y.H.; d’Humieres, D.; Lallemand, P., Lattice BGK models for navier – stokes equation, Europhys. lett., 17, 479, (1992) · Zbl 1116.76419
[9] Chen, S.; Wang, Z.; Shan, X.; Doolen, G.D., Lattice BGK models for navier – stokes equation, J. statist. phys., 68, 379, (1992)
[10] Zou, Q.; Hou, S.; Chen, S.; Doolen, G., An improved incompressible lattice Boltzmann model for time-independent flows, J. statist. phys., 81, 35, (1995) · Zbl 1106.82366
[11] He, X.; Luo, L.-S., Lattice Boltzmann model for the incompressible navier – stokes equation, J. statist. phys., 88, 927, (1997) · Zbl 0939.82042
[12] Filippova, O.; Hänel, D., Grid refinement for lattice-BGK models, J. comput. phys., 147, 219, (1998) · Zbl 0917.76061
[13] O. Filippova, and, D. Hänel, Acceleration of lattice-BGK scheme with grid refinement, J. Comput. Phys, in press. · Zbl 0990.76070
[14] Succi, S.; Bella, G.; Papetti, F., Lattice kinetic theory for numerical combustion, J. sci. comput., 12, 395, (1997) · Zbl 0917.76099
[15] Filippova, O.; Hänel, D., Lattice-BGK model for low Mach number combustion, Int. J. mod. phys. C, 9, (1998) · Zbl 0913.76093
[16] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Annu. rev. fluid mech., 30, 329, (1998) · Zbl 1398.76180
[17] He, X.; Doolen, G., Lattice Boltzmann method on curvilinear coordinate system: vortex shedding behind a circular cylinder, Phys. rev. E, 56, 434, (1997)
[18] Filippova, O.; Hänel, D., Lattice-Boltzmann simulation of gas-particle flow in filters, Comput. & fluids, 26, 697, (1997) · Zbl 0902.76077
[19] R. Mei, private communication, 1999.
[20] Mei, R.; Luo, L.-S.; Shyy, W., An accurate curved boundary treatment in the lattice Boltzmann method, J. comput. phys., 155, 307, (1999) · Zbl 0960.82028
[21] V. S. Ryaben’kii, private communication, 1999.
[22] Oran, E.S.; Boris, J.P., Numerical simulation of reactive flow, (1987), Elsevier Amsterdam/New York · Zbl 0762.76098
[23] Tomboulides, A.G.; Lee, J.C.Y.; Orszag, S.A., Numerical simulation of low Mach number reactive flows, J. sci. comput., 12, 139, (1997) · Zbl 0905.76055
[24] Tomboulides, A.G.; Orszag, S.A., A quasi-two-dimensional benchmark problem for low Mach number compressible codes, J. comput. phys., 146, 691, (1998) · Zbl 0913.76060
[25] Smooke, M.D.; Mitchell, R.E.; Keues, D.E., Numerical solution of two-dimensional axisymmetric laminar diffusion flames, Combust. sci. tech., 67, 85, (1989)
[26] O. Filippova, and, D. Hänel, A novel numerical scheme for reactive flows at low Mach number, in, Proc. of LGA99, Tokyo, Japan, in press. · Zbl 0974.76064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.