×

Switch-toughening of ferroelectrics subjected to electric fields. (English) Zbl 0963.74022

The authors quantify the toughening mechanism of ferroelectrics by 90 degrees polarization switching. In doing so, attention is focused on the case of “small scale switching”, when the specimen size is considerably larger than the switching zone size, and a uniform electric field is assumed. Within the proposed framework, a set of dimensionless material parameters emerges that allows to scale the extent of toughening. The authors present an analytical solution for the toughening of a mono-domain ferroelectric crystal. This solution is then used to make an estimation of the fracture resistance in ferroelectrics against steady-state crack growth. The presented model is shown to be adequate in predicting the fracture toughness of ferroelectrics when the direction of the electric field is unchanged.

MSC:

74F15 Electromagnetic effects in solid mechanics
74R10 Brittle fracture
82D45 Statistical mechanics of ferroelectrics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Budiansky, B.; Hutchinson, J. W.; Lambropoulos, J. C., Continuum theory of dilatant transformation toughening in ceramics, Int. J. Solids Structs., 19, 337-355 (1983) · Zbl 0523.73078
[2] Cao, H. C.; Evans, A. G., Electric-field-induced fatigue crack growth in piezoelectrics, J. Amer. Ceram. Soc., 77, 1783-1786 (1994)
[3] Eshelby, J. D., Determination of the elastic field of an ellipsoidal inclusion and related problems, (Proc. Roy. Soc. London, Ser. A, 241 (1957)), 376-396 · Zbl 0079.39606
[4] Furuta, A.; Uchino, K., Dynamic observation on crack propagation in piezoelectric multilayer actuators, J. Amer. Ceram. Soc., 76, 1615-1617 (1993)
[5] Hao, T. H.; Gong, X.; Suo, Z., Fracture mechanics for the design of ceramic multilayer actuators, J. Mech. Phys. Solids, 44, 23-48 (1995)
[6] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 357-372 (1963) · Zbl 0114.15804
[7] Hwang, S. C.; Lynch, C. S.; McMeeking, R. M., Ferroelectric/ferroelastic interactions and a polarization switching model, Acta Metall. Mater., 43, 2073-2084 (1995)
[8] Kramarov, S. O.; Rez, J. S., Mechanical strength of ferroelectric single crystals and ceramics: experimental studies and fracture theory, Prog. Crystal Growth and Charact., 22, 199-244 (1991)
[9] Lambropoulos, J. C., Shear, shape and orientation effects in transformation toughening, Int. J. Solids Structs., 22, 1083-1106 (1986)
[10] Lynch, C. S., Fracture of ferroelectric and relaxor electro-ceramics: influence of electric field (1995), Manuscripts in preparation
[11] Lynch, C. S.; Yang, W.; Collier, L.; Suo, Z.; McMeeking, R. M., Electric field induced cracking in ferroelectric ceramics, Ferroelectrics, 166, 11-30 (1995)
[12] McHenry, K. D.; Koepke, B. G., Electric field effects on subcritical crack growth in PZT, Fract. Mech., Ceram., 5, 337-352 (1983)
[13] McMeeking, R. M.; Evans, A. G., Mechanics of transformation-toughening in brittle materials, J. Amer. Ceramic Soc., 65, 242-246 (1982)
[14] Mehta, K.; Virkar, A. V., Fracture mechanisms in ferroelastic-ferroelastic lead zirconate titanate (Zr:Ti = 0.54:0.46) ceramics, J. Amer. Ceramic Soc., 73, 567-574 (1990)
[15] Okazaki, K., Mechanical behavior of ferroelectric ceramics, Bull. Amer. Ceram. Soc., 63, 1150-1157 (1984)
[16] Park, S.; Sun, C.-T., Fracture criteria for piezoelectric ceramics, J. Amer. Ceram. Soc., 78, 1475-1480 (1995)
[17] Pisarenko, G. G.; Chushko, V. M.; Kovalev, S. P., Anisotropy of fracture toughness of piezoelectric ceramics, J. Amer. Ceramic Soc., 68, 259-265 (1985)
[18] Singh, R. N.; Wang, H., (Carman, G. P.; Lynch, C.; Sottos, N. R., Crack propagation in piezoelectric materials under combined mechanical and electrical loadings: an experimental study. Proc. of AMD-Vol. 206/MD-Vol. 58. Crack propagation in piezoelectric materials under combined mechanical and electrical loadings: an experimental study. Proc. of AMD-Vol. 206/MD-Vol. 58, Adaptive Materials Systems (1995), ASME), 85-95
[19] Suo, Z., Models for breakdown-resistant dielectric and ferroelectric ceramics, J. Mech. Phys. Solids, 41, 1155-1176 (1993)
[20] Tobin, A. G.; Pak, Y. E., Effects of electric field on fracture of piezoelectric ceramics, (Proc. SPIE, Smart Struct. Mater., 1916 (1993)), 78-86
[21] Uchino, K., Ceramic actuators: principle and applications, MRS Bulletin, April Issue, 42-48 (1993)
[22] Virkar, A. V.; Matsumoto, R. L.K., Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia, J. Am. Ceram. Soc., 69, C226-C244 (1986)
[23] Virkar, A. V.; Jue, J. F.; Smith, P.; Mehta, K.; Prettyman, K., The role of ferroelasticity in toughening of brittle materials, Phase Transitions, 35, 27-46 (1991)
[24] Winzer, S. R.; Shankar, N.; Ritter, A. P., Designing cofired multilayer electrostrictive actuators for reliability, J. Am. Ceram. Soc., 72, 2246-2257 (1989)
[25] Yamamoto, T.; Igarashi, H.; Okazaki, K., Internal stress anisotropies induced by electric field in lanthanum modified \(PbTiO_3\) ceramics, Ferroelectrics, 50, 273-278 (1983)
[26] Yang, W.; Suo, Z., Cracking in ceramic actuators caused by electrostriction, J. Mech. Phys. Solids, 42, 649-663 (1994)
[27] Zhu, T.; Yang, W., Toughness variation of ferroelectrics by polarization switch under non-uniform electric field, Acta Mater. (1997), in press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.