Ermentrout, Bard; Pascal, Matthew; Gutkin, Boris The effects of spike frequency adaptation and negative feeback on the synchronization of neural oscillators. (English) Zbl 0963.68647 Neural Comput. 13, No. 6, 1285-1310 (2001). Summary: There are several different biophysical mechanisms for spike frequency adaptation observed in recordings from cortical neurons. The two most commonly used in modeling studies are a calcium-dependent potassium current \(I_{ahp}\) and a slow voltage-dependent potassium current, \(I_m\). We show that both of these have strong effects on the synchronization properties of excitatorily coupled neurons. Furthermore, we show that the reasons for these effects are different. We show through an analysis of some standard models, that the M-current adaptation alters the mechanism for repetitive firing, while the afterhyperpolarization adaptation works via shunting the incoming synapses. This latter mechanism applies with a network that has recurrent inhibition. The shunting behavior is captured in a simple two-variable reduced model that arises near certain types of bifurcations. A one-dimensional map is derived from the simplified model. Cited in 41 Documents MSC: 68U99 Computing methodologies and applications 68T05 Learning and adaptive systems in artificial intelligence Keywords:cortical neurons PDF BibTeX XML Cite \textit{B. Ermentrout} et al., Neural Comput. 13, No. 6, 1285--1310 (2001; Zbl 0963.68647) Full Text: DOI References: [1] DOI: 10.1016/S0006-3495(77)85598-7 · doi:10.1016/S0006-3495(77)85598-7 [2] DOI: 10.1162/089976698300017511 · doi:10.1162/089976698300017511 [3] DOI: 10.1162/neco.1996.8.5.979 · doi:10.1162/neco.1996.8.5.979 [4] DOI: 10.1162/089976698300017106 · doi:10.1162/089976698300017106 [5] DOI: 10.1137/0515019 · Zbl 0558.34033 · doi:10.1137/0515019 [6] DOI: 10.1137/0146017 · Zbl 0594.58033 · doi:10.1137/0146017 [7] DOI: 10.1007/BF00160535 · Zbl 0718.92004 · doi:10.1007/BF00160535 [8] DOI: 10.1073/pnas.95.3.1259 · doi:10.1073/pnas.95.3.1259 [9] DOI: 10.1017/S0952523800005071 · doi:10.1017/S0952523800005071 [10] DOI: 10.1162/neco.1995.7.2.307 · doi:10.1162/neco.1995.7.2.307 [11] DOI: 10.1109/72.761707 · doi:10.1109/72.761707 [12] DOI: 10.1142/S0218127400000840 · Zbl 1090.92505 · doi:10.1142/S0218127400000840 [13] DOI: 10.1073/pnas.97.4.1867 · doi:10.1073/pnas.97.4.1867 [14] McCormick D. A., J. Neurophysiol. 54 pp 782– (1985) [15] DOI: 10.1016/S0006-3495(81)84782-0 · doi:10.1016/S0006-3495(81)84782-0 [16] Reyes A. D., J. Neurophysiol. 69 pp 1673– (1993) [17] Reyes A. D., J. Neurophysiol. 69 pp 1661– (1993) [18] DOI: 10.1007/BF00961879 · doi:10.1007/BF00961879 [19] Wang X. J., J. Neurophys. 79 pp 1549– (1998) [20] DOI: 10.1023/A:1008864410375 · Zbl 05473258 · doi:10.1023/A:1008864410375 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.