×

Numerical solution for various inverse problems. (English) Zbl 0962.76078

Summary: We consider the classical two-dimensional model of jet flow using an ideal incompressible weightless fluid. Solving a direct problem consists in determining the pressure (or velocity) distribution on an obstacle in a flow. The aim of this paper is to describe a numerical method for constructing wetted walls to obtain arbitrary velocity distributions, i.e. to solve the inverse problem. This method is applied to airfoil design and to the construction of an infinite wall impinged by a jet. The specified distributions may entail constraints required for an analysis of the existence of solutions.

MSC:

76M40 Complex variables methods applied to problems in fluid mechanics
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing

Software:

kirch
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Birkhoff, E.H. Zarantonello, Jets, Wakes and Cavities, Academic Press, New York, 1957.; G. Birkhoff, E.H. Zarantonello, Jets, Wakes and Cavities, Academic Press, New York, 1957. · Zbl 0077.18703
[2] Dias, F.; Elcrat, A. R.; Trefethen, L. N., Ideal jet flow in two dimensions, J. Fluid Mech., 185, 275-288 (1987) · Zbl 0633.76013
[3] Dias, F.; Vanden-Broeck, J. M., Flows emerging from a nozzle and falling under gravity, J. Fluid Mech., 213, 465-477 (1990) · Zbl 0698.76049
[4] Elcrat, A. R.; Trefethen, L. N., Classical free-streamline flow over a polygonal obstacle, J. Comput. Appl. Math., 14, 251-265 (1986) · Zbl 0577.76018
[5] R. Eppler, D.M. Somers, A computer program for the design and analysis of low-speed airfoils, NASA Technical Memorandum 80210, 1980.; R. Eppler, D.M. Somers, A computer program for the design and analysis of low-speed airfoils, NASA Technical Memorandum 80210, 1980.
[6] M.I. Gurevich, The Theory of Jets in an Ideal Fluid, Pergamon Press, Oxford, 1966.; M.I. Gurevich, The Theory of Jets in an Ideal Fluid, Pergamon Press, Oxford, 1966.
[7] Hureau, J.; Brunon, E.; Legallais, Ph., Ideal free streamline flow over a curved obstacle, J. Comput. Appl. Math., 72, 193-214 (1996) · Zbl 0857.76015
[8] Hureau, J.; Weber, R., Impinging free jets of ideal fluid, J. Fluid Mech., 372, 357-374 (1998) · Zbl 0922.76066
[9] C. Jacob, Introduction Mathématique à la Mécanique des Fluides, Gauthier-Villars, Paris, 1959.; C. Jacob, Introduction Mathématique à la Mécanique des Fluides, Gauthier-Villars, Paris, 1959.
[10] A.C. King, M.I.G. Bloor, Free streamline flow over curved topography, Quart. Appl. Maths. XLVIII, 2 (1990) 281-293.; A.C. King, M.I.G. Bloor, Free streamline flow over curved topography, Quart. Appl. Maths. XLVIII, 2 (1990) 281-293. · Zbl 0702.76016
[11] T. Levi-Civita, Scie e leggi di resistenzia, Rendiconti del circolo Mathematico di Palermo 23 (1907).; T. Levi-Civita, Scie e leggi di resistenzia, Rendiconti del circolo Mathematico di Palermo 23 (1907). · JFM 38.0753.04
[12] M.J. Lighthill, A new method of two-dimensional aerodynamic design, Reports and Memoranda No. 2112, 1945.; M.J. Lighthill, A new method of two-dimensional aerodynamic design, Reports and Memoranda No. 2112, 1945.
[13] L.M. Milne-Thomson, Theoretical Hydrodynamics, 5th Edition, Macmillan, New York, 1968.; L.M. Milne-Thomson, Theoretical Hydrodynamics, 5th Edition, Macmillan, New York, 1968.
[14] Niéto, J. L.; Hureau, J.; Mudry, M., A general method for practical conformal mapping of aerodynamic shapes, Eur. J. Mech. B/Fluids, 10, 2, 147-160 (1991) · Zbl 0728.76009
[15] Peng, W.; Parker, D. F., An ideal fluid jet impinging on an uneven wall, J. Fluid Mech., 333, 231-255 (1997) · Zbl 0894.76008
[16] F. Toison, J. Hureau, Calcul de la surface libre d’un canal dont le radier a une forme quelconque, Sixièmes journées de l’hydrodynamique - Nantes (1997) 107-118.; F. Toison, J. Hureau, Calcul de la surface libre d’un canal dont le radier a une forme quelconque, Sixièmes journées de l’hydrodynamique - Nantes (1997) 107-118.
[17] G. Volpe, Geometric and surface pressure restrictions in airfoil design, AGARD Report No. 780, Inverse methods for airfoil design for aeronautical and turbomachinery applications, 1990, pp. 4.1-4.14.; G. Volpe, Geometric and surface pressure restrictions in airfoil design, AGARD Report No. 780, Inverse methods for airfoil design for aeronautical and turbomachinery applications, 1990, pp. 4.1-4.14.
[18] Weber, R.; Hureau, J., Impact of an ideal fluid jet on a curved wall: the inverse problem, Eur. J. Mech. B/Fluids, 18, 2, 283-294 (1999) · Zbl 0935.76007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.