×

zbMATH — the first resource for mathematics

The role of the spinodal region in one-dimensional martensitic phase transitions. (English) Zbl 0962.74530

MSC:
74N05 Crystals in solids
74N30 Problems involving hysteresis in solids
80A22 Stefan problems, phase changes, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abeyaratne, R.; Chu, C.; James, R.D., Kinetics and hysteresis in martensitic single crystals, ()
[2] Ball, J.M.; Chu, C.; James, R.D., Hysteresis during stress-induced variant rearrangement, J. physique, 5, 8, (1995)
[3] Ball, J.M.; Holmes, P.J.; James, R.D.; Pego, R.L.; Swart, P.J., On the dynamics of fine structure, J. nonlinear sci., 1, 17-70, (1991) · Zbl 0791.35030
[4] Brandon, D.; Lin, T.; Rogers, R., Phase transitions and hysteresis in nonlocal and order parameter models, Meccanica, 30, 541-565, (1995) · Zbl 0835.73005
[5] Budiansky, B.; Truskinovsky, L., On the mechanics of stress-induced phase transformation in zirconia, J. mech. phys. solid, 41, 9, 1445-1459, (1993) · Zbl 0800.73018
[6] Carr, J.; Gurtin, M.E.; Slemrod, M., Structured phase transitions on a finite interval, Arch. rat. mech. anal., 86, 317-351, (1984) · Zbl 0564.76075
[7] Chu, C., Hysteresis and microstructures: A study of biaxial loading on compound twins of copper-aluminum-nickel single crystals, ()
[8] Doedel, E.J.; Kerneves, J.P., AUTO: software for continuation and bifucation problems in ordinary differential equations, (1986)
[9] Ericksen, J.L., Equilibrium of bars, J. elasticity, 5, 191-202, (1975) · Zbl 0324.73067
[10] Fedelich, B.; Zanzotto, G., Hysteresis in discrete systems of possibly interacting elements with a two well energy, J. nonlinear sci., 2, 319-342, (1992) · Zbl 0814.73004
[11] Fu, S.; Müller, I.; Xu, H., The interior of the pseudoelastic hysteresis, (), 39-42
[12] Healey, T.J., Global bifurcation and continuation in the presence of symmetry with an application to solid mechanics, SIAM J. math. anal., 19, 4, 824-840, (1988) · Zbl 0664.34052
[13] James, R.D., Deformation of shape-memory materials, (), 81-90
[14] Kaganova, I.; Roitburd, A., Equilibrium shape of an inclusion in a solid, Sov. phys. dokl., 32, 925-927, (1987)
[15] Kartha, S.; Krumhansl, J.A.; Sethna, J.P.; Wickham, L.K., Disorder driven pretransitional tweed pattern in martensitic transformations, Phys. rev. B, 52, 2, 803, (1995)
[16] Kinderlehrer, D.; Ma, L., The hysteretic event in the computation of magnetization and magnetostriction, () · Zbl 0939.35182
[17] B. Li, Unpublished notes; private communication, 1995.
[18] Lifshitz, I.M., Macroscopic description of twinning phenomena in crystals, Sov. phys. JETP, 18, 1134-1152, (1948)
[19] Lifshitz, A.E.; Rybnikov, G.L., Dissipative structures and Couette flow in a non-Newtonian fluid, Sov. phys. dokl, 30, 4, 275-278, (1985) · Zbl 0632.76009
[20] Müller, S., Minimizing sequences for nonconvex functionals, phase transitions and singular perturbations, (), 31-44
[21] Müller, S., Singular perturbation as a selection criterion for periodic minimizing sequences, Calculus of variations, 1, 169-204, (1993) · Zbl 0821.49015
[22] Müller, S.; Villaggio, P., A model for an elastic-plastic body, Arch. rat. mech. anal., 65, 25-46, (1977) · Zbl 0366.73038
[23] Novick-Cohen, A.; Segel, L.A., Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10, 277-298, (1984)
[24] Rogers, R.; Truskinovsky, L., Discretization and hysteresis, Physica B, 233, 370-375, (1997)
[25] Rosakis, P., Compact zones of shear transformation in an anisotropic solid, J. mech. phys. solids, 40, 1163-1195, (1992) · Zbl 0763.73005
[26] Schryvers, D.; Ma, Y.; Toth, L.; Tanner, L., Nucleation and growth of bainitic ni_5al3 in B2 austenite, ()
[27] Shaw, J.A.; Kyriakides, S., On the thermomechanical behavior of niti, technical, (), EMRL
[28] Triantafyllidis, N.; Bardenhagen, S., On higher order gradient continuum theories in 1-D nonlinear elasticity. derivation from and comparison to the corresponding discrete models, J. elasticity, 33, 3, 259-293, (1993) · Zbl 0819.73008
[29] Truskinovsky, L.; Zanzotto, G., Finite-scale microstructures and metastability in one-dimensional elasticity, Meccanica, 30, 577-589, (1995) · Zbl 0836.73061
[30] Truskinovsky, L.; Zanzotto, G., Ericksen’s bar revisited: energy wiggles, J. mech. phys. solids, 44, 8, 1371-1408, (1996)
[31] Young, L.C., ()
[32] Zeidler, E., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.