×

zbMATH — the first resource for mathematics

Principal and plenary train algebras. (English) Zbl 0962.17022
A Peirce decomposition is obtained for plenary train algebras and it is proved that every genetic algebra is a plenary train algebra.

MSC:
17D92 Genetic algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0024-3795(91)90081-7 · Zbl 0728.17019
[2] DOI: 10.1112/jlms/s1-15.2.136 · Zbl 0027.15502
[3] DOI: 10.1017/S0013091500009548 · Zbl 0247.92002
[4] DOI: 10.1080/00927879408825160 · Zbl 0810.17025
[5] DOI: 10.1112/jlms/s1-42.1.489 · Zbl 0163.03103
[6] DOI: 10.1017/S0013091500026110 · Zbl 0244.17017
[7] López-Sánchez J., Comm. in Algebra 24 pp 4439– (1997)
[8] Lyubich Yu.I, Biomathematics 22 (1992)
[9] DOI: 10.1016/0024-3795(91)90092-B · Zbl 0728.17020
[10] DOI: 10.1090/S0273-0979-97-00712-X · Zbl 0876.17040
[11] DOI: 10.1017/S0013091500005411 · Zbl 0754.17029
[12] DOI: 10.1007/BF01246770 · Zbl 0741.17020
[13] Worz-Busekros A., Lecute Notes in Biomathematics 36 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.