zbMATH — the first resource for mathematics

Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. (English) Zbl 0961.76047
Summary: We extend certain well-known upwind schemes for hyperbolic equations to solve two-dimensional Saint-Venant (or shallow water) equations. We consider unstructured meshes and a new type of finite volumes to obtain a treatment of boundary conditions. The source term involving the gradient of depth is upwinded in a similar way as the flux terms. The resulting schemes are compared in terms of a conservation property. For time discretization, we consider both explicit and implicit schemes. Finally, we present numerical results for tidal flows in the Pontevedra ria, Galicia, Spain.

76M12 Finite volume methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography
86-08 Computational methods for problems pertaining to geophysics
Full Text: DOI
[1] Alcrudo, F.; García-Navarro, P., A high-resolution Godunov-type scheme in finite volumes for the 2d shallow-water equations, Int. J. numer. methods fluids, 16, 489-505, (1993) · Zbl 0766.76067
[2] Bermúdez, A.; Rodríguez, C.; Vilar, M.A., Solving shallow water equations by a mixed implicit finite element method, IMA J. numer. anal., 11, 79-97, (1991) · Zbl 0713.76069
[3] Bermúdez, A.; Vázquez, M.E., Upwind methods for hyperbolic conservation laws with source terms, Comput. fluids, 23, 1049-1071, (1994) · Zbl 0816.76052
[4] Casulli, V., Semi-implicit finite difference methods for the two-dimensional shallow water equations, J. comput. phys., 56-74, (1990) · Zbl 0681.76022
[5] Crouzeix, M.; Raviart, P.A., Conforming and non-conforming finite-element methods for solving the stationary Stokes equations, Rairo r-3, 33-75, (1973) · Zbl 0302.65087
[6] Dervieux, A.; Desideri, J.A., Compressible flow solvers using unstructured grids, Rapports de recherche INRIA 1732, (1992)
[7] Fennema, R.J.; Chaudhry, M.H., Explicit methods for 2-D transient free-surface flows, J. hyd. engrg., 116, 8, 1013-1034, (1990)
[8] Gambolati, G.; Rinaldo, A.; Brebbia, C.A.; Gray, W.G.; Pinder, G.F., Computational methods in surface hydrology, (1990), Computational Mechanics Publications Southampton
[9] Glaister, P., Approximate Riemann solutions of the shallow water equations, J. hydraulic res., 26, 293-305, (1988)
[10] Glaister, P., An efficient numerical scheme for the two-dimensional shallow water equations using arithmetic averaging, Comput. math. applic., 27, 97-117, (1994) · Zbl 0798.76050
[11] Harten, A., On a class of high resolution total-variation-stable finite-difference schemes, SIAM J. numer. anal., 21, 1, 1-23, (1984) · Zbl 0547.65062
[12] Harten, A.; Lax, P.; van Leer, A., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM rev., 25, 35-61, (1983) · Zbl 0565.65051
[13] Peraire, J.; Zienkiewicz, O.C.; Morgan, K., Shallow water problems: a general explicit formulation, Int. J. numer. methods engrg., 22, 547-574, (1986) · Zbl 0588.76027
[14] Steger, J.; Warming, R.F., Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods, J. comput. phys., 40, (1981) · Zbl 0468.76066
[15] Stoker, J.J., Water waves, (1957), Interscience New York · Zbl 0078.40805
[16] Stoufflet, B., Résolution numérique des équations d’Euler des fluides parfaits compressibles par des schémas implicites en éléments finis, ()
[17] van Leer, B.; van Leer, B., Progress in multi-dimensional upwind differencing, (), Also to appear · Zbl 0467.76075
[18] Vázquez, M.E., Estudio de esquemas descentrados para su aplicación a las leyes de conservación hiperbólicas con términes fuente, ()
[19] Vijayasundaram, G., Transonic flow simulations using an upstream centered scheme of Godunov in finite elements, J. comput. phys., 63, 416-433, (1986) · Zbl 0592.76081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.