zbMATH — the first resource for mathematics

A study of strain localization in a multiple scale framework. – The one-dimensional problem. (English) Zbl 0961.74009
The authors investigate large strains localized in small regions. They split the displacement field into “coarse” and “fine” components. Using finite element formulations and linearized iterative procedure of Newton-Raphson type, the authors study softening problems in order to recover regularizing effects based on the dissipated energy. Rate-independent plasticity is treated by means of mean-sensitive Galerkin method. Then the authors describe formulations which include discrete models and crack band theory, give a nonlocal formulation based on weighted strains, analyse a multiple scale model characterized by a stiffness matrix, and determine the variations of tangent modulus. The conclusions show that the standard Galerkin method is unable to represent arbitrary fine scales, and that the regularizing technique provides coarse scale solutions free of pathological mesh dependence. Numerical simulations are performed for inviscid strain softening and viscoplastic strain localization. Plots show the displacement growth beginning from the onset of localization under loading, illustrate the invariance of discretized solutions and demonstrate the convergence of quadratures.

74C20 Large-strain, rate-dependent theories of plasticity
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Hadamard, J., Leçons sur la propagation des ondes et LES equations de l’hydro-dynamique, (1903), Hermann Paris · JFM 34.0793.06
[2] Geiringer, H., Beitrag zum vollständigen ebenen plastizitätsproblem, (), 185-190 · JFM 57.1055.05
[3] Hill, R., Acceleration waves in solids, J. mech. phys. solids, 10, 1-16, (1962) · Zbl 0111.37701
[4] Mandel, J., Conditions de stabilité et postulat de Drucker, (), 58-68
[5] Hill, R.; Hutchinson, J.W., Bifurcation phenomena in the plane tension test, J. mech. phys. solids, 23, 239-264, (1975) · Zbl 0331.73048
[6] Rice, J.R., The localization of plastic deformation, (), 207-220
[7] Asaro, R.J., Micromechanics of crystals and polycrystals, Adv. appl. mech., 23, 1-115, (1983)
[8] Kachanov, L.M., Foundations of the theory of plasticity, (1971), North Holland Publishing Co · Zbl 0231.73015
[9] Matthies, H.; Strang, G.; Christiansen, E., The saddle point of a differential program, (), 309-318
[10] Simo, J.C.; Oliver, J.; Armero, F., An analysis of strong discontinuities induced by softening solutions in rate-independent solids, J. comput. mech., 12, 277-296, (1993) · Zbl 0783.73024
[11] Armero, F.; Garikipati, K., Recent advances in the analysis and numerical simulation of strain localization in inelastic solids, (), 547-561
[12] Armero, F.; Garikipati, K., An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids, Int. J. solids struct., 33, 2863-2885, (1996) · Zbl 0924.73084
[13] Anand, L.; Kim, K.H.; Shawki, T.G., Onset of shear localization in viscoplastic solids, J. mech. phys. solids, 35, 407-429, (1987) · Zbl 0612.73046
[14] Shawki, T.G.; Clifton, R.J., Shear band formation in thermal viscoplastic materials, Mech. mater., 8, 13-43, (1989)
[15] Needleman, A., Dynamic shear band development in plane strain, J. appl. mech., 56, 1-9, (1989)
[16] Crisfield, M.A.; Wills, J., Solution strategies and strain softening, Comput methods appl. mech. engrg., 66, 267-289, (1988) · Zbl 0618.73035
[17] Pietruszczak, St.; Mróz, Z., Finite element analysis of deformation of strain-softening materials, Int. J. numer. methods engrg., 17, 327-334, (1981) · Zbl 0461.73063
[18] Willam, K., Experimental and computational aspects of concrete fracture, (), 33-70
[19] Cervera, M.; Hinton, E.; Hassan, O., Nonlinear analysis of reinforced concrete plate and shell structures using 20-noded isoparametric brick elements, Comput. struct., 25, 845-869, (1987) · Zbl 0607.73083
[20] Oliver, J., A consistent characteristic length for smeared cracking models, Int. J. numer. methods engrg., 28, 461-474, (1989) · Zbl 0676.73066
[21] Hillerborg, A.; Modéer, M.; Petersson, P.E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and concrete res., 6, 773-782, (1976)
[22] Hillerborg, A., Numerical methods to simulate softening and fracture of concrete, (), 141-170
[23] Bazant, Z.P.; Oh, B.H., Crack band theory for fracture of concrete, Matériaux et constructions, 39, 155-177, (1983)
[24] de Borst, R.; Sluys, L.J., Localisation in a Cosserat continuum under static and dynamic loading conditions, Comput. methods appl. mech. engrg., 90, 805-827, (1991)
[25] Yu, J.; Peric, D.; Owen, D.R.J., An assessment of the Cosserat continuum through the finite element simulation of a strain localisation problem, (), 321-332
[26] Bazant, Z.P.; Belytschko, T.B.; Chang, T.P., Continuum theory for strain softening, J. engrg. mech., 110, 1666-1691, (1984)
[27] Stromberg, L.; Ristinmaa, M., Finite element formulation of a non-local plasticity theory, Comput. methods appl. mech. engrg., 136, 127-144, (1996) · Zbl 0918.73118
[28] Coleman, B.D.; Hodgdon, M.L., On shear bands in ductile materials, Arch. rat. mech. anal., 90, 219-247, (1985) · Zbl 0625.73041
[29] Peerlings, R.H.J.; de Borst, R.; Brekelmans, A.M.; de Vree, J.H.P., Gradient enhanced damage for quasi-brittle materials, Int. J. numer. methods engrg., 39, 3391-3403, (1996) · Zbl 0882.73057
[30] Oliver, J., Modelling strong discontinuities in solid mechanics via strain softening constitutive equations, part 1 :fundamentals, Int. J. numer. methods engrg., 39, 3575-3600, (1996) · Zbl 0888.73018
[31] Ortiz, M.; Leroy, Y.; Needleman, A., A finite element method for localized failure analysis, Comput. methods appl. mech. engrg., 61, 189-214, (1987) · Zbl 0597.73105
[32] Belytschko, T.B.; Fish, J.; Engleman, B.E., A finite element with embedded localization zones, Comput. methods appl. mech. engrg., 70, 59-89, (1988) · Zbl 0653.73032
[33] Dvorkin, E.N., 2d finite elements with displacement interpolated embedded localization lines: the analysis of fracture in frictional materials, Comput. methods appl. mech. engrg., 90, 829-844, (1991)
[34] Lu, Y.Y.; Belytschko, T.B., A spectral overlay method for quasi-static viscoplasticity: applications to anti-plane crack and comparison with closed-form solutions, Comput. struct., 51, 719-728, (1994) · Zbl 0866.73069
[35] Hughes, T.J.R., Multiscale phenomena; Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. methods appl. mech. engrg., 127, 387-401, (1995) · Zbl 0866.76044
[36] Simo, J.C.; Hughes, T.J.R., Computational inelasticity, (1997), Springer Verlag · Zbl 0934.74003
[37] Read, H.E.; Hegemier, G.A., Strain softening of rock, solid and concrete—a review article, Mech. mater., 3, 271-294, (1984)
[38] Bazant, Z.P., Mechanics of distributed cracking, Appl. mech. rev., 39, 675-705, (1986)
[39] Bazant, Z.P., Instability, ductility and size effect in strain-softening concrete, J. engrg. mech., 102, 331-344, (1976)
[40] Sture, S.; Ko, H.Y., Strain softening of brittle geological materials, Int. J. numer. anal. methods geomech., 2, 237-253, (1978)
[41] Govindjee, S.; Kay, G.J.; Simo, J.C., Anisotropic modelling and numerical simulation of brittle damage in concrete, Int. J. numer. methods engrg., 38, 3611-3633, (1995) · Zbl 0836.73055
[42] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[43] Ottosen, N., Thermodynamic consequences of strain softening in tension, J. engrg. mech., 112, 1152-1164, (1986)
[44] Nacar, A.; Needleman, A.; Ortiz, M., A finite element method for analyzing localization in rate independent solids at finite strains, Comput. methods appl. mech. engrg., 73, 235-258, (1989) · Zbl 0688.73042
[45] K. Garikipati, A study of strong discontinuities in a multiple scale framework, in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.