# zbMATH — the first resource for mathematics

Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis. (English) Zbl 0959.76045
Summary: We present an eigensolution method for global non-parallel flow stability analysis. The differential eigenvalue problem resulting from linear stability equations of non-parallel flow is discretized with the penalty FEM. The large-dimensional algebraic eigenvalue problem is solved with the use of subspace iteration method. Separation of eigenvalues interesting for the flow stability analysis is performed with the inverse Cayley transformation. It is shown that certain barriers resulting from large dimensions of the eigenvalue problem and limiting the non-parallel flow stability method can be overcome with this approach. To demonstrate the algorithm, we analyze the stability of the flow around circular cylinder.

##### MSC:
 76M10 Finite element methods applied to problems in fluid mechanics 76E09 Stability and instability of nonparallel flows in hydrodynamic stability
##### Software:
eigs; IRAM; LAPACK; EISPACK
Full Text:
##### References:
 [1] Joseph, D.D., Stability of fluid motions, (1970), Springer-Verlag Berlin · Zbl 0202.26602 [2] Meyer, A., Modern algorithms for large sparse eigenvalue problems, (1987), Akademie-Verlag Berlin · Zbl 0613.65032 [3] Wilkinson, J.H., The algebraic eigenvalue problem, (1965), Clarendon Press Berlin · Zbl 0258.65037 [4] Bauer, F.L., Das verfahren der treppeniteration und verwandte verfahren zur Lösung algebraischer eigenwertprobleme, Z. angew. math. phys., 8, 214-235, (1957) · Zbl 0078.12103 [5] Cliffe, K.A.; Garratt, T.J.; Spense, A., Iterative methods for detection of Hopf bifurcations in finite element discretisations of incompressible flow problems, SIAM J. sci. stat. comput., 4, 337-356, (1992) [6] Cliffe, K.A.; Garratt, T.J.; Spense, A., Eigenvalues of discretised navier—stokes equation with application to the detection of Hopf bifurcations, Adv. comput. math., 1, 337-356, (1993) · Zbl 0830.76048 [7] Dijkstra, H.A.; Molekmar, M.J.; Van Der Ploeg, A.; Botta, E.F.F., An efficient code to compute non-parallel steady flows and their linear stability, Comput. fluids, 24, 415-434, (1995) · Zbl 0848.76056 [8] Duff, I.S.; Scott, J.A., Computing selected eigenvalues of large sparse unsymmetric matrices using subspace iteration, ACM trans. math. software, 19, 137-159, (1993) · Zbl 0888.65039 [9] Jackson, C.P., A finite-element study of the onset of vortex shedding in flow past variously shaped bodies, J. fluid mech., 182, 23-45, (1987) · Zbl 0639.76041 [10] Jennings, A.; Stewart, W.J., Simultaneous iteration for partial eigensolution of real matrices, J. inst. math. appl., 15, 351-361, (1975) · Zbl 0307.65042 [11] Kim, I.; Pearlstein, A.J., Stability of the flow past a sphere, J. fluid mech., 211, 73-93, (1990) · Zbl 0686.76029 [12] Meerbergen, K.; Spense, A.; Roose, D., Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices, Bit, 34, 409-423, (1994) · Zbl 0814.65037 [13] Morzyński, M.; Afanasiev, K.; Thiele, F., Numerical investigation of 2-D wake stability and control problem, Z. angew. math. mech., 77, Supplement 2, 625-626, (1997) · Zbl 0900.76193 [14] Noack, B.R.; Eckelmann, H., A global stability analysis of the steady and periodic cylinder wake, J. fluid mech., V.270, 297-330, (1994) · Zbl 0813.76025 [15] Saad, Y., Numerical solution of large nonsymmetric eigenvalue problems, Comput. phys. comm., 53, 71-90, (1989) · Zbl 0798.65053 [16] Sorensen, D.C., Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. matrix anal. appl., 13, 357-385, (1992) · Zbl 0763.65025 [17] Stewart, G.W., Simultaneous iteration for computing invariant subspaces of Nonhermitian matrices, Numer. math., 25, 123-136, (1976) · Zbl 0328.65025 [18] Stewart, W.J., A simultaneous iteration algorithm for real matrices, ACM trans. math. software, 7, 184-198, (1981) · Zbl 0455.65028 [19] Strykowski, P.J.; Sreenivasan, K.R., On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers, J. fluid mech., 218, 71-107, (1987) [20] Wolter, D.; Morzyński, M.; Schiitz, H.; Thiele, F., Numerische untersuchungen zur stabilität der kreiszylinderströmung, Z. angew. math. mech., 69, 601-604, (1989) [21] Zebib, A., Stability of viscous flow past a circular cylinder, J. engrg. math., 21, 155-165, (1987) · Zbl 0632.76063 [22] Freund, R.W.; Nachtigal, N.M., Implementation details of the coupled QMR algorithm, (), 123-140 · Zbl 0794.65029 [23] Garbow, B.; Boyle, J.; Dongarra, J.; Moler, C., Matrix eigensystem routines, (), 51 · Zbl 0368.65020 [24] Garratt, T.J.; Moore, G.; Spense, A., Two methods for the numerical detection of Hopf bifurcations, (), 119-123 [25] Morzyński, M.; Thiele, F., Numerical investigations of wake instabilities, (), 135-142 [26] Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; DuCroz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPAC User’s guide, (1992), SIAM Philadelphia [27] Garratt, T.J., The numerical detection of Hopf bifurcations in large systems arising in fluid mechanics, () · Zbl 0834.65024 [28] Freund, R.W.; Gutknecht, M.H.; Nachtigal, N.M., An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part I, () · Zbl 0770.65022 [29] Freund, R.W.; Nachtigal, N.M., An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part II, () · Zbl 0770.65022 [30] Morzyński, M.; Afanasiev, K.; Thiele, F., Methods of the wake control, (), Göttingen, Germany · Zbl 0925.76211 [31] Schumm, M., Experimentelle untersuchungen zum problem der absoluten und konvektiven instabilität in nachlauf zweidimensionaler stumpfer Körper, () [32] Meerbergen, K.; Spence, A., Implicitly restarted Arnoldi with purification for the shift-invert transformation, Internet, (1995) · Zbl 0864.65020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.