×

The shear-slip mesh update method. (English) Zbl 0959.76037

Summary: We present the shear-slip mesh update method, designed to handle certain classes of flow problems with moving boundaries and interfaces. Specifically, we focus on problems with large but regular boundary displacements, such as straight-line translation or rotation. These motions are accommodated by using a thin layer of deforming space-time elements, together with limited remeshing without any projection at space-time slab interaces. As examples, we discuss two-dimensional flow around two counter-rotating squares, and three-dimensional flow past a propeller.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Tezduyar, T.E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space—time procedure: I. the concept and the preliminary tests, Comput. methods appl. mech. engrg., 94, 339-351, (1992) · Zbl 0745.76044
[2] Tezduyar, T.E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space—time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. methods appl. mech. engrg., 94, 353-371, (1992) · Zbl 0745.76045
[3] Tezduyar, T.E.; Aliabadi, S.; Behr, M.; Johnson, A.; Kalro, V.; Litke, M., Flow simulation and high performance computing, Comput. mech., 18, 397-412, (1996) · Zbl 0893.76046
[4] I. Güler, M. Behr and T.E. Tezduyar, Parallel finite element computation of free-surface flows, Comput. Mech., to appear.
[5] Behr, M.; Tezduyar, T.E., A note on shear-slip mesh update method, () · Zbl 0959.76037
[6] Kalro, V.; Tezduyar, T.E., Parallel finite element computation of 3D incompressible flows on mpps, () · Zbl 0916.76034
[7] Benek, J.A.; Buning, P.G.; Steger, J.L., A 3-D Chimera grid embedding technique, (), AIAA
[8] Kato, C.; Ikegawa, M., Large eddy simulation of unsteady turbulent wake of a circular cylinder using the finite element method, (), 49-56
[9] Smagorinsky, J., General circulation experiments with the primitive equations, Mthly weather rev., 91, 99-165, (1963)
[10] Behr, M.; Tezduyar, T.E., Finite element solution strategies for large-scale flow simulations, Comput. methods appl. mech. engrg., 112, 3-24, (1994) · Zbl 0846.76041
[11] Saad, Y.; Schultz, M., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. statist. comput., 7, 856-869, (1986) · Zbl 0599.65018
[12] Behr, M.; Tezduyar, T.E.; Higuchi, H., Wake interference behind two flat plates normal to the flow: A finite-element study, Theoretical comput. fluid mech., 2, 223-250, (1991) · Zbl 0719.76048
[13] Mittal, S.; Kumar, V.; Raghuvanshi, A., Unsteady incompressible flows past two cylinders in tandem and staggered arrangements, Int. J. numer. methods fluids, 25, 1315-1344, (1997) · Zbl 0909.76050
[14] Johnson, A.A.; Tezduyar, T.E., Mesh generation and update strategies for parallel computation of 3D flow problems, () · Zbl 0949.76049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.