×

zbMATH — the first resource for mathematics

AdS/CFT four-point functions: how to succeed at \(z\)-integrals without really trying. (English) Zbl 0958.81143
Summary: A new method is discussed which vastly simplifies one of the two integrals over \(\text{AdS}_{d+1}\) required to compute exchange graphs for four-point functions of scalars in the AdS/CFT correspondence. The explicit form of the bulk-to-bulk propagator is not required. Previous results for scalar, gauge boson and graviton exchange are reproduced, and new results are given for massive vectors. It is found that precisely for the cases that occur in the \(\text{AdS}_5\times S^5\) compactification of type IIB supergravity, the exchange diagrams reduce to a finite sum of graphs with quartic scalar vertices. The analogous integrals in \(n\)-point scalar diagrams for \(n>4\) are also evaluated.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Maldacena, J., Adv. theor. math. phys., 2, 231, (1998), hep-th/9711200
[2] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428 (1998) 105, hep-th/9802109.
[3] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253, hep-th/9802150.
[4] Muck, W.; Viswanathan, K.S., Phys. rev. D, 58, 041901, (1998), hep-th/9804035
[5] Freedman, D.Z.; Mathur, S.D.; Matusis, A.; Rastelli, L., Phys. lett. B, 452, 61, (1999), hep-th/9808006
[6] D’Hoker, E.; Freedman, D.Z., Nucl. phys. B, 544, 612, (1999), hep-th/9809179
[7] H. Liu, Scattering in anti-de Sitter space and operator product expansion, hep-th/9811152.
[8] E. D’Hoker, D.Z. Freedman, General scalar exchange in AdS_{d+1}, hep-th/9811257, to appear in Nucl. Phys. B.
[9] E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis, L. Rastelli, Graviton exchange and complete 4-point functions in the AdS/CFT correspondence, hep-th/9903196. · Zbl 0958.81147
[10] G. Chalmers, K. Schalm, The large Nc limit of four-point functions in \(N=4\) superYang-Mills theory from anti-de Sitter supergravity, hep-th/9810051. · Zbl 0958.81133
[11] G. Chalmers, K. Schalm, Holographic normal ordering and multiparticle states in the AdS/CFT correspondence, hep-th/9901144. · Zbl 1112.81347
[12] Kim, H.J.; Romans, L.J.; van Nieuwenhuizen, P., Phys. rev. D, 32, 389, (1985)
[13] Minwalla, S., Jhep, 10, 002, (1998), hep-th/9803053
[14] Aharony, O.; Oz, Y.; Yin, Z., Phys. lett. B, 430, 87, (1998), hep-th/9803051
[15] Deger, S.; Kaya, A.; Sezgin, E.; Sundell, P., Nucl. phys. B, 536, 110, (1998), hep-th/9804166
[16] J. de Boer, Six-dimensional supergravity on S(3) × AdS(3) and 2-D conformal field theory, hep-th/9806104.
[17] Fronsdal, C., Phys. rev D, 10, 589, (1974)
[18] Burgess, C.P.; Lutken, C.A., Nucl. phys. B, 272, 661, (1986)
[19] Inami, T.; Ooguri, H., Prog. theor. phys., 73, 1051, (1985)
[20] Burges, C.J.C.; Freedman, D.Z.; Davis, S.; Gibbons, G.W., Ann. phys., 167, 285, (1986)
[21] Breitenlohner, P.; Freedman, D.Z., Phys. lett. B, 115, 197, (1982)
[22] Breitenlohner, P.; Freedman, D.Z., Ann. phys., 144, 249, (1982)
[23] Mezincescu, L.; Townsend, P.K., Ann. phys., 160, 406, (1985)
[24] Freedman, D.Z.; Mathur, S.D.; Matusis, A.; Rastelli, L., Nucl. phys. B, 546, 96, (1999), hep-th/984058
[25] Slansky, R., Phys. rep., 79, 1, (1981)
[26] A. Erdelyi, Bateman Manuscript Project, Higher Transcendental Functions, Vol. I (Krieger Publ. Comp. 1981).
[27] E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis, L. Rastelli, Graviton and gauge boson propagators in AdS_{d+1}, hep-th/9902042. · Zbl 0958.81146
[28] Allen, B.; Jacobson, T., Commun. math. phys., 103, 669, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.