×

A note on Hadamard roots of rational functions. (English) Zbl 0958.11009

Let \(F\) be a polynomial such that \(\sum_{k\geq 0} F(b_k) X^k\) is a rational function. Generalizing a conjecture of Pisot, the author considers the following conjecture: Suppose that all the \(b_k\) belong to a fixed field finitely generated over \({\mathbb Q}\), then prove that there exists a rational function \(\sum_{k\geq 0} c_k X^k\) such that \(F(c_k)=F(b_k)\) for all \(k\geq 0\). The paper contains a very detailed discussion of this problem and a comparison with the Hadamard quotient problem (solved by the author in 1988). Many ideas are proposed to try to get a proof of this conjecture.

MSC:

11B37 Recurrences
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Benali Benzaghou, Algèbres de Hadamard , Bull. Soc. Math. France 98 (1970), 209-252. · Zbl 0206.33203
[2] David G. Cantor, On arithmetic properties of the Taylor series of rational functions , Canad. J. Math. 21 (1969), 378-382. · Zbl 0179.06402
[3] ——–, On arithmetic properties of the Taylor series of rational functions II, Pacific J. Math. 41 (1972), 329-334. · Zbl 0249.12013 · doi:10.2140/pjm.1972.41.329
[4] H. Davenport, D.J. Lewis and A. Schinzel, Equations of the form \(f(x)=g(y)\) , Quart. J. Math. 12 (1961), 304-312. · Zbl 0121.28403 · doi:10.1093/qmath/12.1.304
[5] P. Dienes, The Taylor series , OUP 1931; reprinted by Dover Books, 1957; p. 346ff. · JFM 57.0339.10
[6] Neal Koblitz, \(p\)-adic numbers, \(p\)-adic analysis, and Zeta-functions , Springer Verlag, New York, 1977. · Zbl 0364.12015
[7] A. Perelli and U. Zannier, Arithmetic properties of certain recurrence sequences , J. Austral. Math. Soc., Ser. A 37 (1984), 4-16. · Zbl 0543.10008 · doi:10.1017/S1446788700021704
[8] G. Pólya, Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen , J. für Math. 151 (1920), 1-31. · JFM 47.0276.02
[9] Alfred J. van der Poorten, Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles , C.R. Acad. Sci. Paris 306 (1988), 97-102. · Zbl 0635.10007
[10] ——–, Some facts that should be better known ; Especially about rational functions , in Number theory and applications (Richard A. Mollin, ed.), Kluwer Academic Publishers, Dordrecht, 1989. · Zbl 0687.10007
[11] ——–, A divergent argument concerning Hadamard roots of rational functions , in Analytic number theory (B.C. Berndt, H.G. Diamond, H. Halberstam and A. Hildebrand, eds.), Birkhäuser, Boston, 1990. · Zbl 0723.11010
[12] ——–, The Lech-Mahler theorem... with tears , unpublished manuscript. · Zbl 0727.11005
[13] A.J. van der Poorten and Robert S. Rumely, Zeros of \(p\)-adic exponential polynomials II, J. London Math. Soc. 36 (1987), 1-15. · Zbl 0633.12006 · doi:10.1112/jlms/s2-36.1.1
[14] Yves Pourchet, Solution du problème arithmétique du quotient de Hadamard de deux fractions rationnelles , C.R. Acad. Sci. Paris 288 (1979), 1055-1057. · Zbl 0421.13005
[15] J.F. Ritt, Algebraic combinations of exponentials , Trans. Amer. Math. Soc. 31 (1929), 654-679. JSTOR: · JFM 55.0211.03 · doi:10.2307/1989555
[16] ——–, On the zeros of exponential polynomials , Trans. Amer. Math. Soc. 31 (1929), 680-686. JSTOR: · JFM 55.0212.01 · doi:10.2307/1989556
[17] Robert S. Rumely, Notes on van der Poorten’s proof of the Hadamard quotient theorem , in Sém. Théorie des Nombres de Paris (Catherine Goldstein, ed.), Birkhäuser, 1988. · Zbl 0661.10017
[18] Robert S. Rumely and A.J. van der Poorten, A note on the Hadamard \(k\)th root of a rational function , J. Austral. Math. Soc., Ser. A 43 (1987), 314-327. · Zbl 0635.10008 · doi:10.1017/S144678870002961X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.