zbMATH — the first resource for mathematics

Poisson-Lie \(T\)-duality. (English) Zbl 0957.81598
Summary: A description of dual non-Abelian duality is given, based on the notion of the Drinfeld double. The presentation basically follows the original paper [1], written in collaboration with P. Ševera, but here the emphasis is put on the algebraic rather than the geometric aspect of the construction and a concrete example of the Borelian double is worked out in detail.

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
Full Text: DOI arXiv
[1] Klimčík, C.; Ševera, P., Phys. lett., B351, 455, (1995)
[2] Buscher, T.H.; Buscher, T.H.; Duff, M.J.; Roček, M.; Verlinde, E.; Giveon, A.; Roček, M.; Kiritsis, E.; Kiritsis, E.; Álvarez, E.; Álvarez-Gaumé, L.; Barbón, J.; Lozano, Y.; Giveon, A.; Rabinovici, E.; Veneziano, G.; Meissner, K.A.; Veneziano, G.; Álvarez, E.; Álvarez-Gaumé, L.; Lozano, Y.; Klimčík, C.; Ševera, P., Phys. lett., Phys. lett., Nucl. phys., Nucl. phys., Nucl. phys., Nucl. phys., Mod. phys. lett., Nucl. phys., Nucl. phys., Phys. lett., Phys. lett., Mod. phys. lett., A10, 323, (1995)
[3] Chiang, T.; Greene, B.R., Phases of mirror symmetry, and references therein
[4] de la Ossa, X.; Quevedo, F., Nucl. phys., B403, 377, (1993)
[5] Fridling, B.E.; Jevicki, A., Phys. lett., B134, 70, (1984)
[6] Fradkin, E.S.; Tseytlin, A.A., Ann. phys., 162, 31, (1984)
[7] Giveon, A.; Roček, M.; Gasperini, M.; Ricci, R.; Veneziano, G.; Álvarez, E.; Álvarez-Gaumé, L.; Lozano, Y.; Elitzur, S.; Giveon, A.; Rabinovici, E.; Schwimmer, A.; Veneziano, G.; Sfetsos, K.; Curtright, T.; Zachos, C.; Alvarez, O.; Liu, C-H., Target-space duality between simple compact Lie groups and Lie algebras under the Hamiltonian formalism: I. remnants of duality at the classical level, Nucl. phys., Phys. lett., Nucl. phys., Nucl. phys., Phys. rev., Phys. rev., D49, 5408, (1994), Florida preprint UMTG-184
[8] Álvarez, E.; Álvarez-Gaumé, L.; Lozano, Y., (), 1
[9] Giveon, A.; Porrati, M.; Rabinovici, E., Phys. rep., 244, 77, (1994)
[10] Tyurin, E., Non-abelian axial-vector duality: a geometric description, Stony Brook preprint ITP-SB-95-21
[11] Kiritsis, E.; Obers, N., Phys. lett., B334, 67, (1994)
[12] Drinfeld, V.G.; Falceto, F.; Gawȩdzki, K.; Alekseev, A.Yu.; Malkin, A.Z., Quantum groups, (), J. geom. phys., Commun. math. phys., 162, 147, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.