zbMATH — the first resource for mathematics

Dual string pairs with \(N=1\) and \(N=2\) supersymmetry in four dimensions. (English) Zbl 0957.81590
Summary: Based on a simple adiabatic argument and by considering the heterotic string counterpart of certain symmetries of Type II superstrings such as \((-1)^FL\) and orientation reversal, we construct orbifold candidates for dual pairs of heterotic and Type II string theories with \(N=2\) and \(N=1\) supersymmetry. We also analyze from a similar point of view the K3 fibrations that enter in recently proposed \(N=2\) candidates and use this structure together with certain orientation-reversing symmetries to construct \(N=1\) dual pairs. These pairs involve generalizations of Type I vacua which can be equivalent to \(E_8\times E_8\) heterotic strings, while standard Type I vacua are related to SO(32).

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J28 \(K3\) surfaces and Enriques surfaces
32G81 Applications of deformations of analytic structures to the sciences
Full Text: DOI arXiv
[1] Schwarz, J.H.; Sen, A., Duality symmetries of 4d heterotic strings, Phys. lett., B312, 105, (1993)
[2] Hull, C.M.; Townsend, P.K., Unity of superstring dualities · Zbl 1052.83532
[3] Witten, E., String theory dynamics in various dimensions, to appear in Nucl. Phys. B · Zbl 1054.81526
[4] Seiberg, N., The power of duality: exact results in 4d SUSY field theory · Zbl 0907.58076
[5] Kachru, S.; Vafa, C., Exact results for N = 2 compactifications of heterotic strings, to appear in Nucl. Phys. B · Zbl 0957.14509
[6] Ferrara, S.; Harvey, J.A.; Strominger, A.; Vafa, C., Second-quantized mirror symmetry · Zbl 0899.32012
[7] Klemm, A.; Lerche, W.; Mayr, P., K3-fibrations and heterotic-type II string duality
[8] Kaplunovsky, V.; Louis, J.; Theisen, S., Aspects of duality in N=2 string vacua
[9] I. Antoniadis, E. Gava, K. Narain and T. Taylor, unpublished.
[10] Chaudhuri, S.; Hockney, G.; Lykken, J.; Chaudhuri, S., Maximally supersymmetric string theories in D<10, (), to appear in the proceedings · Zbl 1020.81763
[11] Chaudhuri, S.; Polchinski, J., Moduli space of CHL strings
[12] Lian, B.H.; Yau, S.-T., Arithmetic properties of the mirror map and quantum coupling · Zbl 0867.14017
[13] Sen, A.; Sen, A.; Banks, T.; Dixon, L.J.; Friedan, D.; Martinec, E., Phenomenology and conformal field theory or can string theory predict the weak mixing angle, Nucl. phys., Nucl. phys., Nucl. phys., B299, 613, (1988)
[14] Banks, T.; Dixon, L.J., Constraints on string vacua with space-time supersymmetry, Nucl. phys., B307, 93, (1988)
[15] Horava, Petr; Dai, J.; Leigh, R.; Polchinski, J.; Leigh, R.; Bianchi, M.; Sagnotti, A., On the systematics of open-string theories, Nucl. phys., Mod. phys. lett., Mod. phys. lett., Phys. lett., 247B, 517, (1990)
[16] Seiberg, N., Observations on the moduli space of superconformal field theories, Nucl. phys., B303, 286, (1988)
[17] de Wit, B.; Lauwers, P.; Van Proeyen, A., Lagrangians of N = 2 supergravity-matter systems, Nucl. phys., B255, 269, (1985)
[18] Seiberg, N.; Witten, E., Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. phys., B426, 19, (1994) · Zbl 0996.81510
[19] Aspinwall, P.; Morrison, D., String theory on K3 surfaces · Zbl 0931.14020
[20] Todorov, A., Applications of the kahler-Einstein-Calabi-Yau metric to moduli of K3 surfaces, Inv. math., 61, 25, (1980)
[21] Affleck, I.; Dine, M.; Seiberg, N., Dynamical supersymmetry breaking in four-dimensions and its phenomenological implications, Nucl. phys., B256, 557, (1985)
[22] Ferrara, S.; Lust, D.; Shapere, A.; Theisen, S., Modular invariance in supersymmetric field theories, Phys. lett., B225, 363, (1989)
[23] Aspinwall, P., ()
[24] Schwarz, J.H.; Sen, A., The type IIA dual of the six-dimensional CHL compactification
[25] Ferrara, S.; Kounnas, C., Extended supersymmetry in four-dimensional type II strings, Nucl. phys., B328, 406, (1989)
[26] Greene, B.; Shapere, A.; Vafa, C.; Yau, S.T., Stringy cosmic strings and non-compact Calabi-Yau manifolds, Nucl. phys., B337, 1, (1990) · Zbl 0744.53045
[27] Candelas, P.; De la Ossa, X.; Font, A.; Katz, S.; Morrison, D., Mirror symmetry for two parameter models-I, Nucl. phys., B416, 481, (1994) · Zbl 0899.14017
[28] Strominger, A., Massless black holes and conifolds in string theory · Zbl 0925.83071
[29] Greene, B.; Morrison, D.; Strominger, A., Black hole condensation and the unification of string vacua · Zbl 0908.53041
[30] Dabholkar, A., Ten dimensional heterotic string as a soliton
[31] Hull, C., String-string duality in ten dimensions
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.