zbMATH — the first resource for mathematics

On the Neumann-Poincaré operator. (English) Zbl 0956.30018
Let \(\Gamma \) be a Jordan curve in the complex plane regular in the sense of Ahlfors and David (AD-regular curve). The authors prove the following characterization of the circle in the class of all AD-regular curves. \(\Gamma \) is the circle iff the Neumann-Poincaré operator (i.e. the double layer potential with the density \(f\) on \(\Gamma \)) transforms the space \(L^2_0(\Gamma)\) of all real valued square integrable functions \(f\) on \(\Gamma \) fulfilling \(\int _{\Gamma }f(\xi)|d\xi |=0\) into itself. This theorem contains a.o. the negative answer to a problem of J. Krzyź from: Linear and complex analysis problem book 3. Part 1. Lecture Notes in Math. 1573. V. P. Havin and N. K. Nikolski (eds.), p. 418 (1994; Zbl 0893.30036).
Reviewer: J.Fuka (Praha)

30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
47B38 Linear operators on function spaces (general)
Full Text: DOI EuDML
[1] M. G. Arsove: Continuous potentials and linear mass distributions. SIAM Rev. 2 (1960), 177-184. · Zbl 0094.08005 · doi:10.1137/1002039
[2] G. David: Opérateurs intégraux singuliers sur certaines courbes du plane complexe. Ann. Scient. Éc. Nor. Sup. 17 (1984), 157-189. · Zbl 0537.42016
[3] P.L. Duren: Theory of \(H^p\) spaces. Academic Press, 1970. · Zbl 0215.20203
[4] D. Gaier: Integralgleichungen erster Art and konforme Abbildung. Math. Z. 147 (1976), 113-129. · Zbl 0304.30006 · doi:10.1007/BF01164277 · eudml:172326
[5] J. Král, I. Netuka, J. Veselý: Teorie potenciálu II. Státní ped. nakl., Praha, 1972.
[6] J. G. Krzy.z: Some remarks concerning the Cauchy operator on AD-regular curves. Annales Un. Mariae Curie-Skłodowska XLII, 7 (1988), 53-58. · Zbl 0716.30034
[7] J. G. Krzy.z: Generalized Neumann-Poincaré operator and chord-arc curves. Annales Un. Mariae Curie-Skłodowska XLIII, 7 (1989), 69-78. · Zbl 0736.30028
[8] J. G. Krzy.z: Chord-arc curves and generalized Neumann-Poincaré operator \(C_1^{\Gamma }\). “Linear and Complex Analysis Problem Book 3”, Lecture Notes in Math. 1579, V. P. Havin and N. K. Nikolski (eds.), 1994, p. 418.
[9] E. Martensen: Eine Integralgleichung für die logarithmische Gleichgewichtsbelegung und die Krümmung der Randkurve eines ebenen Gebiets. Z. angew. Math.-Mech. 72 (6) (1992), T596-T599. · Zbl 0766.31002
[10] Ch. Pommerenke: Boundary behaviour of conformal maps. Springer-Verlag, 1992. · Zbl 0762.30001
[11] I. I. Priwalow: Randeigenschaften analytischer Funktionen. · Zbl 0073.06501
[12] S. Saks: Theory of the integral. Dover Publications, New York, 1964. · Zbl 1196.28001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.