×

zbMATH — the first resource for mathematics

R. A. Fisher and multivariate analysis. (English) Zbl 0955.62504

MSC:
62-03 History of statistics
01A60 History of mathematics in the 20th century
PDF BibTeX Cite
Full Text: DOI
References:
[1] Anderson, T. W. (1945). The noncentral Wishart distribution and its application to problems in multivariate statistics. Dissertation, Princeton Univ.
[2] Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analy sis. Wiley, New York. Anderson, T. W. (1951a). Estimating linear restrictions on regression coefficients for multivariate distributions. Ann. Math. Statist. 22 327-351. Anderson, T. W. (1951b). Classification by multivariate analysis. Psy chometrika 16 31-50. · Zbl 0043.13902
[3] Bartlett, M. S. (1939). A note on tests of significance in multivariate analysis. Proceedings of the Cambridge Philosophical Society 35 180-185. · Zbl 0023.34205
[4] Bennett, J. H. (1990). Statistical Inference and Analy sis: Selected Correspondence of R. A. Fisher. Clarendon Press, Oxford. · Zbl 0712.01007
[5] Benzécri, J.-P. (1973). L’Analy se des Données. Dunod, Paris. · Zbl 0297.62039
[6] Bose, R. C. (1936). On the exact distribution of D2-statistic. Sankhy\?a 2 143-154.
[7] Bose, R. C. and Roy, S. N. (1938). The distribution of the studentized D2-statistic. Sankhy\?a 4 19-38.
[8] Box, J. F. (1978). R. A. Fisher: The Life of a Scientist. Wiley, New York. · Zbl 0666.01016
[9] Cochran, W. G. (1934). The distribution of quadratic forms in a normal sy stem, with applications to the analysis of variance. Proceedings of the Cambridge Philosophical Society 30 178- 191. · Zbl 0009.12004
[10] Fisher, R. A. (1912). On an absolute criterion for fitting frequency curves. Messenger of Mathematics 41 155-160. · JFM 43.0302.01
[11] Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10 507-521.
[12] Fisher, R. A. (1920). A mathematical examination of the methods of determining the accuracy of an observation by the mean error, and the mean square error. Monthly Notices of the Roy al Astronomical Society 80 758-770.
[13] Fisher, R. A. (1921). On the ”probable error” of a coefficient of correlation deduced from a small sample. Metron 1 3-32.
[14] Fisher, R. A. (1922). The goodness of fit of regression formulae, and the distribution of regression coefficients. J. Roy. Statist. Soc. 85 597-612. Fisher, R. A. (1924a). The distribution of the partial correlation coefficient. Metron 3 329-332. Fisher, R. A. (1924b). The influence of rainfall on the yield of wheat at Rothamsted. Philos. Trans. Roy. Soc. London Ser. B 213 89-142.
[15] Fisher, R. A. (1925). Application of ”Student’s” distribution. Metron 5 90-104. · JFM 51.0387.01
[16] Fisher, R. A. (1928). The general sampling distribution of the multiple correlation coefficient. Proc. Roy. Soc. London Ser. A 121 654-673. · JFM 54.0558.03
[17] Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 179-188.
[18] Fisher, R. A. (1938). The statistical utilization of multiple measurements. Annals of Eugenics 8 376-386. · Zbl 0019.35703
[19] Fisher, R. A. (1939). The sampling distribution of some statistics obtained from nonlinear equations. Annals of Eugenics 9 238-249. · Zbl 0022.37202
[20] Fisher, R. A. (1940). The precision of discriminant functions. Annals of Eugenics 10 422-429. · Zbl 0063.01384
[21] Fisher, R. A. (1950). Contributions to Mathematical Statistics (J. W. Tukey, ed.). Wiley, New York. · Zbl 0040.36201
[22] Fisher, R. A. (1962). The simultaneous distribution of correlation coefficients. Sankhy\?a Ser. A. 24 1-8. · Zbl 0105.33702
[23] Galton, F. (1889). Natural Inheritance. Macmillan, London.
[24] Girshick, M. A. (1939). On the sampling theory of roots of determinantal equations. Ann. Math. Statist. 10 203-224. Helmert, F. R. (1876a). Die Genauigkeit der Formel von Peters zur Berechnung des wahrscheinlichen Beobachtungsfehlers directer Beobachtungen gleicher Genauigkeit. Astronom. Nachr. 88 113-132. Helmert, F. R. (1876b). Über die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler und über einige damit im Zusammenhange stehende Fragen. Zeitschrift f ür Mathematik und physik 21 192-218. · Zbl 0023.24503
[25] Hotelling, H. (1931). The generalization of Student’s ratio. Ann. Math. Statist. 2 360-378. · Zbl 0004.26503
[26] Hsu, P. L. (1939). On the distribution roots of certain determinantal equations. Annals of Eugenics 9 250-258. · Zbl 0022.24502
[27] Hsu, P. L. (1941). On the problem of rank and the limiting distribution of Fisher’s test function. Annals of Eugenics 11 39-41.
[28] Irwin, J. O. (1931). Mathematical theorems involved in the analysis of variance. J. Roy. Statist. Soc. 94 284-300. · Zbl 0002.20002
[29] Irwin, J. O. (1934). On the independence of the constituent items in the analysis of variance. J. Roy. Statist. Soc. Suppl. 1 236- 251. · JFM 63.1100.04
[30] Kruskal, W. H. (1946). Helmert’s distribution. Amer. Math. Monthly 53 435-438. JSTOR: · Zbl 0063.03378
[31] Kruskal, W. H. (1968). Review of ”Forerunners of the Pearson 2” by H. O. Lancaster. Math. Rev. 36 916.
[32] Lancaster, H. O. (1966). Forerunners of the Pearson’s 2. Austral. J. Statist. 8 117-126. · Zbl 0171.17301
[33] Mahalanobis, P. C. (1930). On tests and measures of group divergence. Part I. Theoretical formulae. Journal and Proceedings of the Asiatic Society of Bengal 26 541-588. · JFM 58.1182.22
[34] Mood, A. M. (1951). On the distribution of characteristic roots of normal second-moment matrices. Ann. Math. Statist. 22 266-273. · Zbl 0042.37906
[35] Pearson, E. S. (1968). Studies in the history of probability and statistics. XX. Some early correspondence between W. S. Gossett, R. A. Fisher and Karl Pearson, with notes and comments. Biometrika 55 445-467. JSTOR:
[36] Pearson, K. (1896). Mathematical contributions to the theory of evolution. III. Regression, heredity and panmixia. Philos. Trans. Roy. Soc. London Ser. A 187 253-318. · JFM 27.0185.01
[37] Pearson, K. (1900). On the criterion that a given sy stem of derivations from the probable in the case of a correlated sy stem of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 5 50 157-175. · JFM 31.0238.04
[38] Pearson, K. (1915). On the distribution of the standard deviations of small samples. Appendix I to papers by ”Student” and R. A. Fisher. Biometrika 10 522-529.
[39] Porter, T. M. (1986). The Rise of Statistical Thinking, 1820- 1900. Princeton Univ. Press.
[40] Rao, C. R. (1992). R. A. Fisher: the founder of modern statistics. Statist. Sci. 7 34-48. · Zbl 0955.01534
[41] Roy, S. N. (1939). p-statistics or some generalisations in analysis of variance appropriate to multivariate problems. Sankhy\?a 4 381-396.
[42] Savage, L. J. (1976). On rereading R. A. Fisher. Ann. Statist. 4 441-500. · Zbl 0325.62008
[43] Soper, H. E. (1913). On the probable error of the correlation coefficient to a second approximation. Biometrika 9 91-115. Soper, H. E., Young, A. W., Cave, B. M., Lee, A. and Pearson,
[44] K. (1917). On the distribution of the correlation coefficient in small samples. Appendix II to the papers of ”Student” and R. A. Fisher. A co-operative study. Biometrika 11 328-413.
[45] Stigler, S. M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900. Harvard Univ. Press. Student (1908a). The probable error of a mean. Biometrika 6 1-25. Student (1908b). Probable error of a correlation coefficient. Biometrika 6 302-310.
[46] Walker, H. M. (1929). Studies in the History of Statistical Method. Williams and Wilkins, Baltimore. · JFM 55.0622.15
[47] Wishart, J. (1928). The generalized product moment distribution in samples from a normal multivariate population. Biometrika 20A 32-52. · JFM 54.0565.02
[48] Wishart, J. (1934). Statistics in agricultural research. J. Roy. Statist. Soc. Suppl. 1 26-51. · JFM 63.1129.12
[49] Wishart, J. (1948). Proofs of the distribution law of the second order moment statistics. Biometrika 35 55-57. JSTOR: · Zbl 0031.17101
[50] Yule, G. U. (1897). On the theory of correlation. J. Roy. Statist. Soc. 60 812-854. · JFM 28.0211.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.