Finite element computation of unsteady viscous compressible flows. (English) Zbl 0953.76051

From the summary: We present computations of unsteady viscous transonic flows past cylinders and airfoils. Stabilized finite element methods are employed to solve the compressible Navier-Stokes equations in their conservative form. The nonlinear equations resulting from the finite element discretizations are solved using GMRES technique. To test the accuracy of the formulation, Mach 2 flow past a circular cylinder is computed with a mesh that is fine enough to resolve the shock structure for Reynolds number 50. The computational results agree quite well with analytical and theoretical results.


76M10 Finite element methods applied to problems in fluid mechanics
76H05 Transonic flows
76N15 Gas dynamics (general theory)
Full Text: DOI


[1] Aliabadi, S.K., Parallel finite element computations in aerospace applications, () · Zbl 0862.76033
[2] Tezduyar, T.E.; Aliabadi, S.K.; Behr, M.; Mittal, S., Massively parallel finite element simulation of compressible and incompressible flows, Comput. methods appl. mech. engrg., 119, 157-177, (1994) · Zbl 0848.76040
[3] Mittal, S.; Tezduyar, T.E., Massively parallel finite element computation of incompressible flows involving fluid-body interactions, Comput. methods appl. mech. engrg., 112, 253-282, (1994) · Zbl 0846.76048
[4] Mittal, S.; Tezduyar, T.E., Parallel finite element simulation of 3D incompressible flows: fluid-structure interactions, Int. J. numer. methods fluids, 21, 933-953, (1995) · Zbl 0873.76047
[5] Schlichting, H., Boundary-layer theory, (1979), McGraw-Hill New York
[6] Kuethe, A.M.; Chow, C.Y., Foundations of aerodynamics. bases of aerodynamic design, (1932), John Wley and Sons New York
[7] Hughes, T.J.R.; Tezduyar, T.E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. methods appl. mech. engrg., 45, 217-284, (1984) · Zbl 0542.76093
[8] Bristeau, M.O.; Pironneau, O.; Glowinski, R.; Periaux, J.; Perrier, P.; Poirier, G., On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods (II). application to transonic flow situations, Comput. methods appl. mech. engrg., 51, 363-394, (1985) · Zbl 0555.76046
[9] Lohner, R.; Morgan, K.; Zienkiewicz, O.C., An adaptive finite element procedue for compressible high speed flows, Comput. appl. mech. engrg., 51, 441-465, (1985) · Zbl 0568.76074
[10] Le Beau, G.J., The finite element computation of compressible flows, () · Zbl 0772.76037
[11] Le Beau, G.J.; Tezduyar, T.E., Finite element computation of compressible flows with the SUPG formulation, (), 21-27
[12] Tezduyar, T.E.; Hughes, T.J.R., Finite element formulations for convection dominated flows with particular emphasis on the compressible. Euler equations, (), Reno, Nevada · Zbl 0535.76074
[13] Peraire, J.; Peiro, J.; Morgan, K., Finite element multigrid solution of Euler flows past installed aero-engines, Comput. mech., 11, 433-451, (1993) · Zbl 0771.76041
[14] Bristeau, M.O.; Glowinski, R.; Penaux, J.; Viviand, H., GAMM-workshop: numerical simulation of compressible Navier-Stokes flows; presentation of problems and discussion of results, (), 442-450
[15] Bovin, S.; Fortin, M., A new artificial viscosity method for compressible viscous flow simulations by FEM, Int. J. comput. fluid dyn., 1, 25-41, (1993)
[16] Aliabadi, S.K.; Tezduyar, T.E., Space-time finite element computation of compressible flows involving moving boundaries and interfaces, Comput. methods appl. mech. engrg., 107, 1-2, 209-224, (1993) · Zbl 0798.76037
[17] Hughes, T.J.R.; Brooks, A.N., A multi-dimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[18] Tezduyar, T.E.; Hughes, T.J.R., Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Report prepard under NASA-ames university consortium interchange, no. NCA2-OR745-104, (1982)
[19] Venkatakrishnan, V., Viscous computations using a direct solver, Comput. fluids, 18, 2, 191-204, (1990) · Zbl 0692.76026
[20] Hughes, T.J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. methods appl. mech. engrg., 58, 329-339, (1986) · Zbl 0587.76120
[21] Shakib, F., Finite element analysis of the compressible Euler and Navier-Stokes equations, ()
[22] Tezduyar, T.E.; Mittal, S.; Ray, S.E.; Shih, R., Incompressible flow computations with stabilized biliner and linear equal-orderinterpolation velocity-pressure elements, Comput. methods appl. mech. engrg., 95, 221-242, (1992) · Zbl 0756.76048
[23] Aliabadi, S.K.; Ray, S.E.; Tezduyar, T.E., SUPG finite element computation of compressible flows with entropy and conservation variables formulations, Comput. mech., 11, 300-312, (1993) · Zbl 0772.76032
[24] Saad, Y.; Schultz, M., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. statis. comput., 7, 856-869, (1986) · Zbl 0599.65018
[25] Shapiro, A.H., The dynamics and thermodynamics of compressible fluid flows, (1958), John Wiley and Sons New York
[26] Liepmann, H.W.; Roshko, A., Elements of gas dynamics, (1957), John Wiley and Sons, Inc., New York · Zbl 0078.39901
[27] Oliger, J.; Sundstrom, A., Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM J. appl. math., 35, 419-446, (1978) · Zbl 0397.35067
[28] Gustafsson, B.; Sundstrom, A., Incompletely parabolic problems in fluid dynamics, SIAM J. appl. math., 35, 343-357, (1978) · Zbl 0389.76050
[29] Van Dyke, M., An album of fluid motion, (1982), Parabolic Press Stanford, CA
[30] Behr, M., Stabilized finite element methods for incompressible flows with emphasis on moving boundaries and interfaces, ()
[31] Bristeau, M.O.; Glowinski, R.; Periaux, J.; Viviand, H., Presentation of problems and discussion of results, (), 1-40
[32] Muller, B.; Berglind, T.; Rizzi, A., Implict central difference simulation of compressible Navier-Stokes flow over a NACA 0012 airfoil, ()
[33] Shakib, F.; Hughes, T.J.R.; Johan, Z., A multi element group preconditioned GMRES algorithm for non-symmetric systems arising in finite element analysis, Comput. methods appl. mech. engrg., 75, 451-456, (1989) · Zbl 0687.76065
[34] Gambier, L., Computation of viscous transonic flows using an unsteady type method and a zonal grid refinement technique, () · Zbl 0631.76065
[35] Satofuka, N.; Morinishi, K.; Nishida, Y., Numerical solution of two-dimensional compressible Navier-Stokes equations using rational Runge-Kutta method, () · Zbl 0631.76067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.