×

zbMATH — the first resource for mathematics

Filtration stability of backward SDE’s. (English) Zbl 0953.60044
This paper is devoted to a study of the solution of backward stochastic differential equations under small perturbations of the underlying filtration. Two notions of convergence of filtrations are defined, and the relevance of this work to finance is discussed.
Reviewer: A.Dale (Durban)

MSC:
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
91B24 Microeconomic theory (price theory and economic markets)
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1214/aoap/1177005363 · Zbl 0780.60058
[2] DOI: 10.1016/0304-4149(95)00091-7 · Zbl 0852.60066
[3] Bally V., An approximation scheme for solutions of BSDE 364 (1995)
[4] Dellacherie C., Probabilities and Potentials B (1982)
[5] DOI: 10.2307/2951600 · Zbl 0763.90005
[6] Jacod J., Lecture Notes in Math 851 pp 169– (1981)
[7] DOI: 10.1016/0304-4149(83)90067-4 · Zbl 0501.60029
[8] Jacod J., Limit theorems for Stochastic Processes (1987) · Zbl 0635.60021
[9] Karatzas I., Brownian Motion and Stochastic Calculus (1988) · Zbl 0638.60065
[10] DOI: 10.1214/aop/1176990333 · Zbl 0742.60036
[11] DOI: 10.1214/aop/1176990334 · Zbl 0742.60053
[12] Meyer, P.A. 1976.Un cours sur les intégrales stochastiques, Vol. 511, 246–400. Berlin, New York: Springer Verlag. SÉminaire de Prob.X, Lecture Notes in Math., Heidelberg
[13] Meyer P.A., Ann. Inst. Henri Poincare 20 pp 353– (1984)
[14] DOI: 10.1016/0167-6911(90)90082-6 · Zbl 0692.93064
[15] Pollard D., Convergence of Stochastic Processes (1984) · Zbl 0544.60045
[16] Protter P., Stochastic Integration and Differential Equations-a New Approach (1990) · Zbl 0694.60047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.