×

zbMATH — the first resource for mathematics

Hard ball systems and the Lorentz gas. (English) Zbl 0953.00014
Encyclopaedia of Mathematical Sciences 101. Mathematical Physics 2. Berlin: Springer (ISBN 3-540-67620-1/hbk). viii, 458 p. (2000).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Burago, D.; Ferleger, S.; Kononenko, A., A geometric approach to semi-dispersing billiards, 9-27 [Zbl 0995.37026]
Murphy, T. J.; Cohen, E. G. D., On the sequences of collisions among hard spheres in infinite space, 29-49 [Zbl 1026.82026]
Simányi, N., Hard ball systems and semi-dispersive billiards: Hyperbolicity and ergodicity, 51-88 [Zbl 0984.37008]
Chernov, N.; Young, L. S., Decay of correlations for Lorentz gases and hard balls, 89-120 [Zbl 0977.37001]
Chernov, N., Entropy values and entropy bounds, 121-143 [Zbl 0995.37006]
Bunimovich, L. A., Existence of transport coefficients, 145-178 [Zbl 1026.82024]
Liverani, C., Interacting particles, 179-216 [Zbl 1026.82021]
Lebowitz, J. L.; Piasecki, J.; Sinai, Ya., Scaling dynamics of a massive piston in an ideal gas., 217-227 [Zbl 1127.82308]
van Zon, R.; van Beijeren, H.; Dorfman, J. R., Kinetic theory estimates for the Kolmogorov-Sinai entropy, and the largest Lyapunov exponents for dilute, hard ball gases and for dilute, random Lorentz gases., 231-278 [Zbl 1078.82528]
Posch, H. A.; Hirschl, R., Simulation of billiards and of hard body fluids, 279-314 [Zbl 0966.37010]
Dettmann, C. P., The Lorentz gas: A paradigm for nonequilibrium stationary states, 315-365 [Zbl 1026.82018]
Tél, T.; Vollmer, J., Entropy balance, multibaker maps, and the dynamics of the Lorentz gas, 367-418 [Zbl 0967.37018]
Szász, D., Boltzmann’s ergodic hypothesis, a conjecture for centuries? (Reprint), 421-446 [Zbl 1026.82001]

MSC:
00B15 Collections of articles of miscellaneous specific interest
82-06 Proceedings, conferences, collections, etc. pertaining to statistical mechanics
37-06 Proceedings, conferences, collections, etc. pertaining to dynamical systems and ergodic theory
PDF BibTeX XML Cite