×

zbMATH — the first resource for mathematics

On high-resolution schemes for solving unsteady compressible two-phase dilute viscous flows. (English) Zbl 0952.76062
Summary: We develop a high-resolution numerical scheme based on the MUSCL-Hancock approach to solve unsteady compressible two-phase dilute viscous flow. Several solvers for the Godunov fluxes are tested, and the results lead to the choice of an exact Riemann solver adapted for both gaseous and dispersed phases. The accuracy of the scheme is proven through specific test cases: one-phase viscous flows over a flat plate in subsonic and supersonic regimes; unsteady flows in a low-pressure shock tube; two-phase dilute viscous flows over a flat plate and, finally, two-phase unsteady viscous flows in a shock tube.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76T20 Suspensions
76N15 Gas dynamics, general
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] and , ’A two-phase restricted equilibrium model for combustion of metalized solid propellants’, AIAA Paper 92-3509, 1992.
[2] and , ’Particulate multiphase flow field calculation with combustion, break-up models for solid rocket motor’, AIAA Paper 94-2780, 1994.
[3] Chang, AIAA J. 18 pp 1455– (1980) · doi:10.2514/3.50905
[4] Daniel, Int. J. Heat Fluid Flow 4 pp 269– (1994) · Zbl 0810.76091 · doi:10.1108/EUM0000000004107
[5] Saurel, AIAA J. 32 pp 1214– (1994) · Zbl 0811.76051 · doi:10.2514/3.12122
[6] and , ’Eulerian approach for unsteady two-phase reactive, solid rocket motor flows loaded with aluminum particles’, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Cleveland, OH, July 13-15, 1998.
[7] and , ’Combustion of aluminum particles in two-phase reactive solid rocket motor’, 3rd Int. Conf. on Multiphase Flow, Lyon, France, June 8-12, 1998.
[8] ’Dynamics of a gas containing small solid particles’, Combustion and Propulsion, 5th AGARD Colloquium, Pergamon Press, Oxford, 1963.
[9] Fluid Dynamics of Multiphase Systems, Blaisdell, Waltham, 1967. · Zbl 0173.52901
[10] Liu, Astronaut. Acta. 13 pp 369– (1967)
[11] Osiptsov, Fluid Dyn. 15 pp 512– (1980) · Zbl 0461.76054 · doi:10.1007/BF01089608
[12] Prabha, Appl. Sci. Res. 36 pp 81– (1980) · Zbl 0445.76088 · doi:10.1007/BF00420334
[13] Singleton, Z. Angew Math. Phys. 19 pp 545– (1965)
[14] Wang, J. Fluid Mech. 186 pp 223– (1988) · Zbl 0643.76082 · doi:10.1017/S0022112088000114
[15] ’Boundary layer motion of a gas-solids suspension’, Proc. Symp. Interaction between Fluids and Particles, Inst. Chem. Eng., pp. 50-63 (1962).
[16] Chamkha, Int. J. Multiphase Flow 17 pp 805– (1991) · doi:10.1016/0301-9322(91)90057-A
[17] Lupoglazoff, La Recherche Aerospatiale 2 pp 21– (1992)
[18] , , and , ’2D Navier-Stokes stability computation for solid rocket motors: rotational, combustion and two-phase flow effects’, AIAA Paper 97-3326, 1997.
[19] Sainseaulieu, J. Comput. Phys. 121 pp 1– (1995) · Zbl 0834.76070 · doi:10.1006/jcph.1995.1176
[20] ’MUSCL, a new approach to numerical gas dynamic’, Computing in Plasma Physics and Astrophysics, Max-Plank Institut für Plasma Physik, Germany, 1976.
[21] Van-Leer, J. Comput. Phys. 32 pp 101– (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[22] Riemann Solvers and Upwind Methods for Fluid Dynamics, Springer, Berlin, 1997. · doi:10.1007/978-3-662-03490-3
[23] Ishii, J. Fluid Mech. 203 pp 475– (1989) · doi:10.1017/S0022112089001552
[24] Dash, AIAA J. 19 pp 842– (1980)
[25] Gilbert, Jet Propul. 25 pp 26– (1955) · doi:10.2514/8.6578
[26] and , Fluid Mechanics and Heat Transfer, Hemisphere, New York, 1958.
[27] Numerical Computation of Internal and External Flows, Wiley, New York, 1988.
[28] ’Single-block Navier-Stokes integrator’, ICASE Report, 1991.
[29] Blasius, Z. Math. Phys. 56 pp 1– (1905)
[30] Couche Limite Laminaire, Cepadues-Editions, 1988.
[31] Mirels, Phys. Fluid. 6 pp 9– (1963) · Zbl 0118.19903 · doi:10.1063/1.1706887
[32] Miura, Proc. R. Soc. Lond. A382 pp 373– (1982) · doi:10.1098/rspa.1982.0107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.