zbMATH — the first resource for mathematics

A solution-adaptive upwind scheme for ideal magnetohydrodynamics. (English) Zbl 0952.76045
Summary: We present a computational scheme for compressible magnetohydrodynamics (MHD). The scheme uses a high-resolution upwinding based on an approximate Riemann solver for MHD and limited reconstruction, an optimally smoothing multi-stage time-stepping, and solution-adaptive refinement and coarsening. In addition, we present a method for increasing the accuracy of the scheme by subtracting off an embedded steady magnetic field. The scheme is validated by comparison with exact solutions. Results are presented for two three-dimensional interaction of the solar wind with a magnetized planet.

76M12 Finite volume methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
85-08 Computational methods for problems pertaining to astronomy and astrophysics
Full Text: DOI
[1] Brio, M.; Wu, C.C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. comput. phys., 75, 400, (1988) · Zbl 0637.76125
[2] Zachary, S.; Colella, P., A higher-order Godunov method for the equations of ideal magnetohydrodynamics, J. comput. phys., 99, 341, (1992) · Zbl 0744.76092
[3] Roe, P.L.; Balsara, D.S., Notes on the eigensystem of magnetohydrodynamics, SIAM J. appl. math., 56, (1996) · Zbl 0845.35092
[4] P. R. Woodward, and, W. Dai, A Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys, in press. · Zbl 0797.76052
[5] Croisille, J.; Khanfir, R.; Chanteur, G., Numerical simulation of the MHD equations by a kinetic-type method, J. sci. comput., 10, 81, (1995) · Zbl 0839.76062
[6] Linde, T., A three-dimensional adaptive multifluid MHD model of the heliosphere, (1998)
[7] Myong, R., Theoretical and computational investigation of nonlinear waves in magnetohydrodynamics, (1996)
[8] Tóth, G.; Odstrcil, D., Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems, J. comput. phys., 128, 82, (1996) · Zbl 0860.76061
[9] Brackbill, J.U.; Barnes, D.C., The effect of nonzero ∇·B on the numerical solution of the magnetohydrodynamic equations, J. comput. phys., 35, 426, (1980) · Zbl 0429.76079
[10] Ramshaw, J., A method for enforcing the solenoidal condition on magnetic fields in numerical calculation, J. comput. phys., 52, 592, (1983) · Zbl 0517.65089
[11] Stone, J.M.; Hawley, J.F.; Evans, C.R.; Norman, M.L., A test suite for magnetohydrodynamical simulations, Ap. j., 388, 415, (1992)
[12] Woodward, P.R.; Dai, W., A simple finite difference scheme for multidimensional magnetohydrodynamical equations, J. comput. phys., 142, 331, (1998) · Zbl 0932.76048
[13] Godunov, S.K., Symmetric form of the equations of magnetohydrodynamics, Numerical methods for mechanics of continuum medium, 1, 26, (1972)
[14] Powell, K.G., A Riemann solver for ideal MHD that works in more than one dimension, (1994)
[15] M. Vinokur, A rigorous derivation of the MHD equations based only on Faraday’s and Ampére’s laws, presentation at LANL MHD workshop, 1996.
[16] W. K. Panofsky and M. Phillips, Classical Electricity and MagnetismAddison-Wesley, Reading, MA, 2nd ed., Chap. 9.
[17] Godunov, S.K., An interesting class of quasiliner systems, Dokl. akad. nauk SSSR, 139, 521, (1972)
[18] Harten, A., High-resolution schemes for hyperbolic conservation laws, J. comput. phys., 49, 357, (1983) · Zbl 0565.65050
[19] Stout, Q.; De Zeeuw, D.; Gombosi, T.; Groth, C.; Marshall, H.; Powell, K., Adaptive blocks: A high-performance data structure, Proceedings, supercomputing ’97, (1997)
[20] Berger, M.J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. comput. phys., 82, 67, (1989) · Zbl 0665.76070
[21] Berger, M.J., Adaptive finite difference methods in fluid dynamics, (1987)
[22] Berger, M.J.; Jameson, A., Automatic adaptive grid refinement for the Euler equations, Aiaa j., 32, 561, (1985)
[23] G. Warren, W. K. Anderson, J. Thomas, and, S. Krist, Grid convergence for adaptive methods, in, AIAA 10th Computational Fluid Dynamics Conference, 1991. · Zbl 0801.76076
[24] J. J. Quirk, A parallel adaptive algorithm for computational shock hydrodynamics, Appl. Numer. Math, in press. · Zbl 0856.65108
[25] Barth, T.J., On unstructured grids and solvers, Computational fluid dynamics, (1990)
[26] van Leer, B.; Lee, W.T.; Roe, P.L.; Powell, K.G.; Tai, C.H., Design of optimally-smoothing schemes for the Euler equations, Comm. appl. numer. math., 8, 761, (1992) · Zbl 0758.76043
[27] B. van Leer, C. H. Tai, and, K. G. Powell, Design of optimally-smoothing multi-stage schemes for the Euler equations, in, AIAA 9th Computational Fluid Dynamics Conference, 1989.
[28] T. J. Barth, Numerical methods for gasdynamic systems, in, An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, edited by, D. Kröner, M. Ohlberger, and C. Rohde, Springer-Verlag, New York/Berlin, 1999.
[29] Roe, P.L., Approximate Riemann solvers, parameter vectors and difference schemes, J. comput. phys., 43, (1981) · Zbl 0474.65066
[30] G. Gallice, Resolution numerique des equations de la magnetohydrodynamique ideale bidimmensionale, in, Méthodes numériques pour la MHD, 1995.
[31] Harten, A., High-resolution schemes for hyperbolic conservation laws, J. comput. phys., 49, 357, (1983) · Zbl 0565.65050
[32] Tanaka, T., Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulations of inhomogeneous systems including strong background potential field, J. comput. phys., 111, 381, (1994) · Zbl 0797.76061
[33] Gombosi, T.I.; DeZeeuw, D.L.; Groth, C.P.T.; Powell, K.G.; Song, P., The length of the magnetotail for northward IMF: results of global 3D MHD simulations, Phys. space plasmas, 15, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.