zbMATH — the first resource for mathematics

E-strings and \(N=4\) topological Yang-Mills theories. (English) Zbl 0951.81025
Summary: We study certain properties of six-dimensional tensionless E-strings (arising from zero size \(E_8\) instantons). In particular we show that \(n\) E-strings form a bound string which carries an \(E_8\) level-\(n\) current algebra as well as a left-over conformal system with \(c=12n-4-(248n/n+30)\), whose characters can be computed. Moreover we show that the characters of the \(n\)-string bound state are captured by \(N=4\) \(U(n)\) topological Yang-Mills theory on \(\frac 12 K3\). This relation not only illuminates certain aspects of E-strings but can also be used to shed light on the properties of \(N=4\) topological Yang-Mills theories on manifolds with \(b_2^+=1\). In particular the E-string partition functions, which can be computed using local mirror symmetry on a Calabi-Yau threefold, give the Euler characteristics of the Yang-Mills instanton moduli space on \(\frac 12 K3\). Moreover, the partition functions are determined by a gap condition combined with a simple recurrence relation which has its origins in a holomorphic anomaly that has been conjectured to exist for \(N=4\) topological Yang-Mills on manifolds with \(b_2^+=1\) and is also related to the holomorphic anomaly for higher genus topological strings on Calabi-Yau threefolds.

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
32J81 Applications of compact analytic spaces to the sciences
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
58D27 Moduli problems for differential geometric structures
81T60 Supersymmetric field theories in quantum mechanics
Full Text: DOI arXiv
[1] Strominger, A.; Vafa, C., Phys. lett. B, 379, 99, (1996), hep-th/9601029
[2] J. Maldacena, A. Strominger, E. Witten, Black hole entropy in M-theory, hep-th/9711053. · Zbl 0951.83034
[3] C. Vafa, Black holes and Calabi-Yau three-folds, HUTP-97-A066, hep-th/9711067.
[4] E. Witten, Some comments on string dynamics, IASSNS-HEP-95-63, hep-th/9507121;
[5] Ganor, O.; Hanany, A., Nucl. phys. B, 474, 122, (1996), hep-th/9602120
[6] Seiberg, N.; Witten, E., Nucl. phys. B, 471, 121, (1996), hep-th/9603003
[7] Morrison, D.; Vafa, C.; Morrison, D.; Vafa, C., Compactifications of F-theory on Calabi-Yau threefolds II, Nucl. phys. B, Nucl. phys. B, 476, 437, (1996), hep-th/9603161 · Zbl 0925.14007
[8] Witten, E., Phase transitions in M-theory and F-theory, Nucl. phys. B, 471, 195, (1996), hep-th/9603150 · Zbl 1003.81537
[9] A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional non-critical strings, to appear in Proc. Conf. Advanced Quantum Field Theory (in memory of Claude [tzykson), CERN-TH-96-184, hep-th/9607139 · Zbl 0976.81503
[10] Minahan, J.; Nemeschansky, D.; Warner, N.P., Investigating the BPS spectrum of non-critical En strings, Nucl. phys. B, 508, 64, (1997), hep-th/9705237 · Zbl 0925.81282
[11] J. Minahan, D. Nemeschansky and N.P. Warner, Partition functions for the BPS states of the E8 non-critical string, USC-97/009, NSF-ITP-97-091, hep-th/9707149. · Zbl 0898.32013
[12] Vafa, C.; Witten, E., A strong coupling test of S-duality, Nucl. phys. B, 431, 3, (1994), hep-th/9408074 · Zbl 0964.81522
[13] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C.; Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Nucl. phys. B, Comm. math. phys., 165, 311, (1994), hep-th/9309140
[14] Vafa, C., Evidence for F-theory, Nucl. phys. B, 469, 403, (1996), hep-th/9602022 · Zbl 1003.81531
[15] Ooguri, H.; Vafa, C., Two-dimensional black hole and singularities of CY manifolds, Nucl. phys. B, 463, 55, (1996), hep-th/9511164 · Zbl 1003.83511
[16] Strominger, A., Open p-branes, Phys. lett. B, 383, 44, (1996), hep-th/9512059 · Zbl 0903.53053
[17] Bershadsky, M.; Sadov, V.; Vafa, C., D-branes and topological field theories, Nucl. phys. B, 463, 420, (1996), hep-th/9511222 · Zbl 1004.81560
[18] M. Douglas, Branes within branes, hep-th/9512077.
[19] Vafa, C., Instantons on D-branes, Nucl. phys. B, 463, 435, (1996), hep-th/9512078 · Zbl 1004.81537
[20] R. Friedman, J.W. Morgan and E. Witten, Vector bundles over elliptic fibrations, alg-geom/9709029. · Zbl 0937.14004
[21] Bershadsky, M.; Johansen, A.; Pantev, T.; Sadov, V., On four-dimensional compactifications of F-theory, Nucl. phys. B, 505, 165, (1997), hep-th/9701165 · Zbl 0925.14019
[22] Lerche, W.; Mayr, P.; Warner, N.P., Non-critical strings, del Pezzo singularities and Seiberg-Witten curves, Nucl. phys. B, 499, 125, (1997), hep-th/9612085 · Zbl 0934.81036
[23] Katz, S.; Klemm, A.; Vafa, C., Geometric engineering of quantum field theories, Nucl. phys. B, 497, 173, (1997), hep-th/9609239 · Zbl 0935.81058
[24] Witten, E., Physical interpretation of certain strong coupling singularities, Mod. phys. let. A, 11, 2649, (1996), hep-th/9609159 · Zbl 1022.81720
[25] M. Bershadsky and C. Vafa, Global anomalies and geometric engineering of critical theories in six dimensions, hep-ttt/9703167.
[26] Verlinde, E., Global aspects of electric-magnetic duality, Nucl. phys. B, 455, 211, (1995), hep-th/950601l · Zbl 0925.58107
[27] O.J. Ganor, Compactification of tensionless string theories, hep-th/9607092.
[28] Hooft, G.J.; Hooft, G.J., A property of electric and magnetic flux in non-abelian gauge theories, Nucl. phys. B, Nucl. phys. B, 153, 141, (1979)
[29] Dijkgraaf, R.; Verlinde, E.; Verlinde, H., Nucl. phys. B, 486, 89, (1997)
[30] Dijkgraaf, R.; Moore, G.; Verlinde, E.; Verlinde, H., Elliptic genera of symmetric products and second quantized strings, Commun. math. phys., 185, 197, (1997), hep-th/9608096 · Zbl 0872.32006
[31] Lang, S., Introduction to modular forms, (1976), Springer Berlin
[32] G. Moore and E. Witten, Integration over the u-plane in Donaldson theory, hep-th/9709193. · Zbl 0899.57021
[33] A. Lossev, N. Nekrassov and S. Shatashvili, Testing Seiberg-Witten solution, hep-th/9801061.
[34] Itzykson, C., Int. J. mod. phys. A B, 8, 1994, (1994)
[35] T. Pantev, private communication.
[36] S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4D N = 2 gauge theories i, hep-th/9706110. · Zbl 0912.32016
[37] N.C. Leung and C. Vafa, Branes and tonic geometry, hep-th/9711013. · Zbl 0914.14024
[38] Vafa, C.; Witten, E., On orbifolds with discrete torsion, J. geom. phys., 15, 189, (1995), hepth/9409188 · Zbl 0816.53053
[39] J. Minahan. D. Nemeschansky and N.P. Warner, Instanton expansions for mass deformed N = 4 super Yang-Mills theories, USC-97/016, hep-th/9710146. · Zbl 0951.81080
[40] Ganor, O.; Morrison, D.; Seiberg, N., Nucl. phys. B, 487, 93, (1997), hep-th/9610251
[41] Yau, S.-T., Essays on mirror manifolds, (1992), international Press Hong Kong · Zbl 0816.00010
[42] Seiberg, N.; Witten, E.; Seiberg, N.; Witten, E., Nucl. phys. B, Nucl. phys. B, 431, 484, (1994), hep-th/9408099
[43] Ganor, O.J., A test of the chiral E8 current algebra on a 6D non-critical string, Nucl. phys. B, 479, 197, (1996), hep-th/9607020 · Zbl 0925.81202
[44] Cecotti, S.; Fendley, P.; Inniligator, K.; Vafa, C., A new supersymmetric index, Nucl. phys. B, 386, 405, (1992), hep-th/9204102
[45] Douglas, M.R.; Katz, S.; Vafa, C., Nucl. phys. B, 497, 155, (1997), hep-th/9609071
[46] Morrison, D.R.; Seiberg, N., Nucl. phys. B, 483, 229, (1997), hep-th/9609070
[47] K. Yoshioka, The Betti numbers of the moduli space of stable sheaves of rank 2 on p2, preprint, Kyoto University; The Betti numbers of the moduli space of stable sheaves of rank 2 on a ruled surface, preprint, Kyoto University; · Zbl 0731.14009
[48] K. Yoshioka, to appear.
[49] L. Gottsche and D. Zagier, Jacobi forms and the structure of Donaldson invariants for 4-manifolds with b+ = 1, alg-geom/9612020. · Zbl 0924.57025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.