×

zbMATH — the first resource for mathematics

Quantum geometry and black hole entropy. (English) Zbl 0949.83024
Summary: A ‘black hole sector’ of nonperturbative canonical quantum gravity is introduced. The quantum black hole degrees of freedom are shown to be described by a Chern-Simons field theory on the horizon. It is shown that the entropy of a large nonrotating black hole is proportional to its horizon area. The constant of proportionality depends upon the Immirzi parameter, which fixes the spectrum of the area operator in loop quantum gravity; an appropriate choice of this parameter gives the Bekenstein-Hawking formula \(S=A/4l^2_{\text{P}}\). With the same choice of the Immirzi parameter, this result also holds for black holes carrying electric or dilatonic charges, which are not necessarily near extremal.

MSC:
83C45 Quantization of the gravitational field
83C57 Black holes
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] S. Carlip, Classical Quantum Gravity 12 pp 2853– (1995) · Zbl 0839.53071 · doi:10.1088/0264-9381/12/12/005
[2] C. Rovelli, Helv. Phys. Acta 69 pp 583– (1996)
[3] A. Ashtekar, Phys. Rev. Lett. 57 pp 2244– (1986) · doi:10.1103/PhysRevLett.57.2244
[4] C. Rovelli, Nucl. Phys. B331 pp 80– (1990) · doi:10.1016/0550-3213(90)90019-A
[5] A. Ashtekar, in: Knots and Quantum Gravity, (1994)
[6] J. Baez, Lett. Math. Phys. 31 pp 213– (1994) · Zbl 0798.58009 · doi:10.1007/BF00761713
[7] C. Rovelli, Phys. Rev. D 52 pp 5743– (1995) · doi:10.1103/PhysRevD.52.5743
[8] J. Baez, Adv. Math. 117 pp 253– (1996) · Zbl 0843.58012 · doi:10.1006/aima.1996.0012
[9] C. Rovelli, Nucl. Phys. B442 pp 593– (1995) · Zbl 0925.83013 · doi:10.1016/0550-3213(95)00150-Q
[10] S. Fritelli, Classical Quantum Gravity 13 pp 2921– (1996) · Zbl 0861.47050 · doi:10.1088/0264-9381/13/11/008
[11] A. Ashtekar, Classical Quantum Gravity 14 pp 55– (1997) · Zbl 0866.58077 · doi:10.1088/0264-9381/14/1A/006
[12] L. Smolin, J. Math. Phys. (N.Y.) 36 pp 6417– (1995) · Zbl 0856.58055 · doi:10.1063/1.531251
[13] C. Rovelli, Phys. Rev. Lett. 77 pp 3288– (1996) · Zbl 0955.83506 · doi:10.1103/PhysRevLett.77.3288
[14] K. Krasnov, Phys. Rev. D 55 pp 3505– (1997) · doi:10.1103/PhysRevD.55.3505
[15] J. F. Plebanski, J. Math. Phys. (N.Y.) 18 pp 2511– (1977) · Zbl 0368.53032 · doi:10.1063/1.523215
[16] J. Samuel, Pramana J. Phys. 28 pp L429– (1987) · doi:10.1007/BF02847105
[17] T. Jacobson, Phys. Lett. 196 pp 39– (1987)
[18] F. Barbero, Phys. Rev. D 54 pp 1492– (1996) · Zbl 1171.83305 · doi:10.1103/PhysRevD.54.1492
[19] G. Immirzi, Nucl. Phys. Proc. Suppl. 57 pp 65– (1997) · Zbl 0976.83504 · doi:10.1016/S0920-5632(97)00354-X
[20] G. Immirzi, Classical Quantum Gravity 14 pp L177– (1997) · Zbl 0887.53059 · doi:10.1088/0264-9381/14/10/002
[21] T. Thiemann, Phys. Lett. B 380 pp 257– (1996) · Zbl 0945.83013 · doi:10.1016/0370-2693(96)00532-1
[22] J. Wheeler, in: Sakharov Memorial Lectures on Physics, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.