×

zbMATH — the first resource for mathematics

Mixed-state entanglement and distillation: Is there a ”bound” entanglement in nature? (English) Zbl 0947.81005
Summary: It is shown that if a mixed state can be distilled to the singlet form it must violate partial transposition criterion [A. Peres, Phys. Rev. Lett. 77, No. 8, 1413-1415 (1996; Zbl 0947.81008)]. It implies that there are two qualitatively different types of entanglement: “free” entanglement which is distillable, and ”bound” entanglement which cannot be brought to the singlet form useful for quantum communication purposes. A possible physical meaning of the result is discussed.

MSC:
81P05 General and philosophical questions in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Einstein, Phys. Rev. 47 pp 777– (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[2] E. Schrödinger, Proc. Camb. Philos. Soc. 31 pp 555– (1935) · JFM 61.1561.03 · doi:10.1017/S0305004100013554
[3] A. Ekert, Phys. Rev. Lett. 67 pp 661– (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[4] C. H. Bennett, Phys. Rev. Lett. 69 pp 2881– (1992) · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[5] C. Bennett, Phys. Rev. Lett. 70 pp 1895– (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[6] D. Bouwmeester, Nature (London) 390 pp 575– (1997) · Zbl 1369.81006 · doi:10.1038/37539
[7] D. Boschi, Phys. Rev. Lett. 80 pp 1121– (1998) · Zbl 0947.81004 · doi:10.1103/PhysRevLett.80.1121
[8] C. H. Bennett, Phys. Rev. A 54 pp 3824– (1996) · Zbl 1371.81041 · doi:10.1103/PhysRevA.54.3824
[9] D. Bohm, in: Quantum Theory (1951)
[10] R. F. Werner, Phys. Rev. A 40 pp 4277– (1989) · Zbl 1371.81145 · doi:10.1103/PhysRevA.40.4277
[11] C. H. Bennett, Phys. Rev. Lett. 76 pp 722– (1996) · doi:10.1103/PhysRevLett.76.722
[12] M. Horodecki, Phys. Rev. Lett. 78 pp 574– (1997) · doi:10.1103/PhysRevLett.78.574
[13] A. Peres, Phys. Rev. Lett. 77 pp 1413– (1996) · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[14] M. Horodecki, Phys. Lett. A 223 pp 1– (1996) · Zbl 1037.81501 · doi:10.1016/S0375-9601(96)00706-2
[15] N. Gisin, Phys. Lett. A 210 pp 151– (1996) · Zbl 1073.81512 · doi:10.1016/S0375-9601(96)80001-6
[16] C. H. Bennett, Phys. Rev. A 53 pp 2046– (1996) · doi:10.1103/PhysRevA.53.2046
[17] P. Horodecki, Phys. Lett. A 232 pp 333– (1997) · Zbl 1053.81504 · doi:10.1016/S0375-9601(97)00416-7
[18] V. Vedral, Phys. Rev. Lett. 78 pp 2275– (1997) · Zbl 0944.81011 · doi:10.1103/PhysRevLett.78.2275
[19] S. Popescu, Phys. Rev. A 56 pp 3319– (1997) · doi:10.1103/PhysRevA.56.R3319
[20] S. Hill, Phys. Rev. Lett. 78 pp 5022– (1997) · doi:10.1103/PhysRevLett.78.5022
[21] S. L. Woronowicz, Rep. Math. Phys. 10 pp 165– (1976) · Zbl 0347.46063 · doi:10.1016/0034-4877(76)90038-0
[22] P. Busch, Found. Phys. 20 pp 1429– (1990) · doi:10.1007/BF01883516
[23] S. Popescu, Phys. Rev. Lett. 72 pp 797– (1994) · Zbl 0973.81506 · doi:10.1103/PhysRevLett.72.797
[24] S. Popescu, Phys. Rev. Lett. 74 pp 2619– (1995) · Zbl 1020.81519 · doi:10.1103/PhysRevLett.74.2619
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.